Effect of Turbulence on Collisional Growth of Cloud Droplets

Xiang-Yu Li Department of Meteorology, Stockholm University, Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
Nordita, KTH Royal Institute of Technology and Stockholm University, Stockholm, Sweden
Swedish e-Science Research Centre, Stockholm, Sweden
Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, Colorado
JILA, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Xiang-Yu Li in
Current site
Google Scholar
PubMed
Close
,
Axel Brandenburg Nordita, KTH Royal Institute of Technology and Stockholm University, Stockholm, Sweden
Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, Colorado
JILA, University of Colorado Boulder, Boulder, Colorado
Department of Astrophysical and Planetary Sciences, University of Colorado Boulder, Boulder, Colorado
Department of Astronomy, Stockholm University, Stockholm, Sweden

Search for other papers by Axel Brandenburg in
Current site
Google Scholar
PubMed
Close
,
Gunilla Svensson Department of Meteorology, Stockholm University, Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
Swedish e-Science Research Centre, Stockholm, Sweden
Global and Climate Dynamics, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Gunilla Svensson in
Current site
Google Scholar
PubMed
Close
,
Nils E. L. Haugen SINTEF Energy Research, Trondheim, Norway
Department of Energy and Process Engineering, Norwegian University of Science and Technology, Trondheim, Norway

Search for other papers by Nils E. L. Haugen in
Current site
Google Scholar
PubMed
Close
,
Bernhard Mehlig Department of Physics, Gothenburg University, Gothenburg, Sweden

Search for other papers by Bernhard Mehlig in
Current site
Google Scholar
PubMed
Close
, and
Igor Rogachevskii Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
Nordita, KTH Royal Institute of Technology and Stockholm University, Stockholm, Sweden

Search for other papers by Igor Rogachevskii in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We investigate the effect of turbulence on the collisional growth of micrometer-sized droplets through high-resolution numerical simulations with well-resolved Kolmogorov scales, assuming a collision and coalescence efficiency of unity. The droplet dynamics and collisions are approximated using a superparticle approach. In the absence of gravity, we show that the time evolution of the shape of the droplet-size distribution due to turbulence-induced collisions depends strongly on the turbulent energy-dissipation rate , but only weakly on the Reynolds number. This can be explained through the dependence of the mean collision rate described by the Saffman–Turner collision model. Consistent with the Saffman–Turner collision model and its extensions, the collision rate increases as even when coalescence is invoked. The size distribution exhibits power-law behavior with a slope of −3.7 from a maximum at approximately 10 up to about 40 μm. When gravity is invoked, turbulence is found to dominate the time evolution of an initially monodisperse droplet distribution at early times. At later times, however, gravity takes over and dominates the collisional growth. We find that the formation of large droplets is very sensitive to the turbulent energy dissipation rate. This is because turbulence enhances the collisional growth between similar-sized droplets at the early stage of raindrop formation. The mean collision rate grows exponentially, which is consistent with the theoretical prediction of the continuous collisional growth even when turbulence-generated collisions are invoked. This consistency only reflects the mean effect of turbulence on collisional growth.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiang-Yu Li, xiang.yu.li@su.se

Abstract

We investigate the effect of turbulence on the collisional growth of micrometer-sized droplets through high-resolution numerical simulations with well-resolved Kolmogorov scales, assuming a collision and coalescence efficiency of unity. The droplet dynamics and collisions are approximated using a superparticle approach. In the absence of gravity, we show that the time evolution of the shape of the droplet-size distribution due to turbulence-induced collisions depends strongly on the turbulent energy-dissipation rate , but only weakly on the Reynolds number. This can be explained through the dependence of the mean collision rate described by the Saffman–Turner collision model. Consistent with the Saffman–Turner collision model and its extensions, the collision rate increases as even when coalescence is invoked. The size distribution exhibits power-law behavior with a slope of −3.7 from a maximum at approximately 10 up to about 40 μm. When gravity is invoked, turbulence is found to dominate the time evolution of an initially monodisperse droplet distribution at early times. At later times, however, gravity takes over and dominates the collisional growth. We find that the formation of large droplets is very sensitive to the turbulent energy dissipation rate. This is because turbulence enhances the collisional growth between similar-sized droplets at the early stage of raindrop formation. The mean collision rate grows exponentially, which is consistent with the theoretical prediction of the continuous collisional growth even when turbulence-generated collisions are invoked. This consistency only reflects the mean effect of turbulence on collisional growth.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiang-Yu Li, xiang.yu.li@su.se
Save
  • Andersson, B., K. Gustavsson, B. Mehlig, and M. Wilkinson, 2007: Advective collisions. Europhys. Lett., 80, 69001, https://doi.org/10.1209/0295-5075/80/69001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ayala, O., B. Rosa, and L.-P. Wang, 2008a: Effects of turbulence on the geometric collision rate of sedimenting droplets. Part 2. Theory and parameterization. New J. Phys., 10, 075016, https://doi.org/10.1088/1367-2630/10/7/075016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ayala, O., B. Rosa, L.-P. Wang, and W. W. Grabowski, 2008b: Effects of turbulence on the geometric collision rate of sedimenting droplets. Part 1. Results from direct numerical simulation. New J. Phys., 10, 075015, https://doi.org/10.1088/1367-2630/10/7/075015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beals, M. J., J. P. Fugal, R. A. Shaw, J. Lu, S. M. Spuler, and J. L. Stith, 2015: Holographic measurements of inhomogeneous cloud mixing at the centimeter scale. Science, 350, 8790, https://doi.org/10.1126/science.aab0751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bec, J., 2003: Fractal clustering of inertial particles in random flows. Phys. Fluids, 15, L81, https://doi.org/10.1063/1.1612500.

  • Bec, J., A. Celani, M. Cencini, and S. Musacchio, 2005: Clustering and collisions in random flows. Phys. Fluids, 17, 073301, https://doi.org/10.1063/1.1940367.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berry, E. X., and R. L. Reinhardt, 1974: An analysis of cloud drop growth by collection: Part I. Double distributions. J. Atmos. Sci., 31, 18141824, https://doi.org/10.1175/1520-0469(1974)031<1814:AAOCDG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bird, G., 1978: Monte Carlo simulation of gas flows. Annu. Rev. Fluid Mech., 10, 1131, https://doi.org/10.1146/annurev.fl.10.010178.000303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bird, G., 1981: Monte-Carlo simulation in an engineering context. Rarefied Gas Dynamics, Parts I and II, Progress in Astronautics and Aeronautics, AIAA, 239–255.

    • Crossref
    • Export Citation
  • Brandenburg, A., 2001: The inverse cascade and nonlinear alpha-effect in simulations of isotropic helical hydromagnetic turbulence. Astrophys. J., 550, 824, https://doi.org/10.1086/319783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brilliantov, N., P. Krapivsky, A. Bodrova, F. Spahn, H. Hayakawa, V. Stadnichuk, and J. Schmidt, 2015: Size distribution of particles in Saturn’s rings from aggregation and fragmentation. Proc. Natl. Acad. Sci. USA, 112, 95369541, https://doi.org/10.1073/pnas.1503957112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chandrakar, K. K., W. Cantrell, K. Chang, D. Ciochetto, D. Niedermeier, M. Ovchinnikov, R. A. Shaw, and F. Yang, 2016: Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions. Proc. Natl. Acad. Sci. USA, 113, 14 24314 248, https://doi.org/10.1073/pnas.1612686113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., P. Bartello, M. Yau, P. Vaillancourt, and K. Zwijsen, 2016: Cloud droplet collisions in turbulent environment: Collision statistics and parameterization. J. Atmos. Sci., 73, 621636, https://doi.org/10.1175/JAS-D-15-0203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., M. Yau, and P. Bartello, 2018: Turbulence effects of collision efficiency and broadening of droplet size distribution in cumulus clouds. J. Atmos. Sci., 75, 203217, https://doi.org/10.1175/JAS-D-17-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chun, J., D. L. Koch, S. L. Rani, A. Ahluwalia, and L. R. Collins, 2005a: Clustering of aerosol particles in isotropic turbulence. J. Fluid Mech., 536, 219251, https://doi.org/10.1017/S0022112005004568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chun, J., D. L. Koch, S. L. Rani, A. Ahluwalia, and L. R. Collins, 2005b: Clustering of aerosol particles in isotropic turbulence. J. Fluid Mech., 536, 219251, https://doi.org/10.1017/S0022112005004568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, L. R., and A. Keswani, 2004: Reynolds number scaling of particle clustering in turbulent aerosols. New J. Phys., 6, 119, https://doi.org/10.1088/1367-2630/6/1/119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Devenish, B., and Coauthors, 2012: Droplet growth in warm turbulent clouds. Quart. J. Roy. Meteor. Soc., 138, 14011429, https://doi.org/10.1002/qj.1897.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duncan, K., B. Mehlig, S. Östlund, and M. Wilkinson, 2005: Clustering in mixing flows. Phys. Rev. Lett., 95, 240602, https://doi.org/10.1103/PhysRevLett.95.240602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dziekan, P., and H. Pawlowska, 2017: Stochastic coalescence in Lagrangian cloud microphysics. Atmos. Chem. Phys., 17, 13 50913 520, https://doi.org/10.5194/acp-17-13509-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elperin, T., N. Kleeorin, and I. Rogachevskii, 1996: Self-excitation of fluctuations of inertial particle concentration in turbulent fluid flow. Phys. Rev. Lett., 77, 53735376, https://doi.org/10.1103/PhysRevLett.77.5373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elperin, T., N. Kleeorin, V. S. L’vov, I. Rogachevskii, and D. Sokoloff, 2002: Clustering instability of the spatial distribution of inertial particles in turbulent flows. Phys. Rev. E, 66, 036302, https://doi.org/10.1103/PhysRevE.66.036302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elperin, T., N. Kleeorin, M. Liberman, and I. Rogachevskii, 2013: Tangling clustering instability for small particles in temperature stratified turbulence. Phys. Fluids, 25, 085104, https://doi.org/10.1063/1.4816643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Falkovich, G., and A. Pumir, 2007: Sling effect in collisions of water droplets in turbulent clouds. J. Atmos. Sci., 64, 44974505, https://doi.org/10.1175/2007JAS2371.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Falkovich, G., A. Fouxon, and M. Stepanov, 2002: Acceleration of rain initiation by cloud turbulence. Nature, 419, 151154, https://doi.org/10.1038/nature00983.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franklin, C. N., 2008: A warm rain microphysics parameterization that includes the effect of turbulence. J. Atmos. Sci., 65, 17951816, https://doi.org/10.1175/2007JAS2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franklin, C. N., P. A. Vaillancourt, M. Yau, and P. Bartello, 2005: Collision rates of cloud droplets in turbulent flow. J. Atmos. Sci., 62, 24512466, https://doi.org/10.1175/JAS3493.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and L.-P. Wang, 2013: Growth of cloud droplets in a turbulent environment. Annu. Rev. Fluid Mech., 45, 293324, https://doi.org/10.1146/annurev-fluid-011212-140750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and G. C. Abade, 2017: Broadening of cloud droplet spectra through eddy hopping: Turbulent adiabatic parcel simulations. J. Atmos. Sci., 74, 14851493, https://doi.org/10.1175/JAS-D-17-0043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grover, S., and H. Pruppacher, 1985: The effect of vertical turbulent fluctuations in the atmosphere on the collection of aerosol particles by cloud drops. J. Atmos. Sci., 42, 23052318, https://doi.org/10.1175/1520-0469(1985)042<2305:TEOVTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gustavsson, K., and B. Mehlig, 2014: Relative velocities of inertial particles in turbulent aerosols. J. Turbul., 15, 3469, https://doi.org/10.1080/14685248.2013.875188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gustavsson, K., and B. Mehlig, 2016a: Statistical model for collisions and recollisions of inertial particles in mixing flows. Eur. Phys. J. E, 39, 55, https://doi.org/10.1140/epje/i2016-16055-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gustavsson, K., and B. Mehlig, 2016b: Statistical models for spatial patterns of heavy particles in turbulence. Adv. Phys., 65, 157, https://doi.org/10.1080/00018732.2016.1164490.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gustavsson, K., B. Mehlig, and M. Wilkinson, 2008a: Collisions of particles advected in random flows. New J. Phys., 10, 075014, https://doi.org/10.1088/1367-2630/10/7/075014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gustavsson, K., B. Mehlig, M. Wilkinson, and V. Uski, 2008b: Variable-range projection model for turbulence-driven collisions. Phys. Rev. Lett., 101, 174503, https://doi.org/10.1103/PhysRevLett.101.174503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gustavsson, K., S. Vajedi, and B. Mehlig, 2014: Clustering of particles falling in a turbulent flow. Phys. Rev. Lett., 112, 214501, https://doi.org/10.1103/PhysRevLett.112.214501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ireland, P. J., A. D. Bragg, and L. R. Collins, 2016a: The effect of Reynolds number on inertial particle dynamics in isotropic turbulence. Part 1. Simulations without gravitational effects. J. Fluid Mech., 796, 617658, https://doi.org/10.1017/jfm.2016.238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ireland, P. J., A. D. Bragg, and L. R. Collins, 2016b: The effect of Reynolds number on inertial particle dynamics in isotropic turbulence. Part 2. Simulations with gravitational effects. J. Fluid Mech., 796, 659711, https://doi.org/10.1017/jfm.2016.227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johansen, A., and M. Lambrechts, 2017: Forming planets via pebble accretion. Annu. Rev. Earth Planet. Sci., 45, 359387, https://doi.org/10.1146/annurev-earth-063016-020226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johansen, A., A. N. Youdin, and Y. Lithwick, 2012: Adding particle collisions to the formation of asteroids and Kuiper belt objects via streaming instabilities. Astron. Astrophys., 537, A125, https://doi.org/10.1051/0004-6361/201117701.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jorgensen, W. L., J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, 1983: Comparison of simple potential functions for simulating liquid water. J. Chem. Phys., 79, 926935, https://doi.org/10.1063/1.445869.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kostinski, A. B., and R. A. Shaw, 2001: Scale-dependent droplet clustering in turbulent clouds. J. Fluid Mech., 434, 389398, https://doi.org/10.1017/S0022112001004001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kostinski, A. B., and R. A. Shaw, 2005: Fluctuations and luck in droplet growth by coalescence. Bull. Amer. Meteor. Soc., 86, 235244, https://doi.org/10.1175/BAMS-86-2-235.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koziol, A. S., and H. Leighton, 1996: The effect of turbulence on the collision rates of small cloud drops. J. Atmos. Sci., 53, 19101920, https://doi.org/10.1175/1520-0469(1996)053<1910:TEOTOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamb, D., and J. Verlinde, 2011: Warm clouds. Physics and Chemistry of Clouds, Cambridge University Press, 433–456.

    • Crossref
    • Export Citation
  • Li, X.-Y., A. Brandenburg, N. E. L. Haugen, and G. Svensson, 2017: Eulerian and Lagrangian approaches to multidimensional condensation and collection. J. Adv. Model. Earth Syst., 9, 11161137, https://doi.org/10.1002/2017MS000930.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marchioli, C., and Coauthors, 2008: Statistics of particle dispersion in direct numerical simulations of wall-bounded turbulence: Results of an international collaborative benchmark test. Int. J. Multiph. Flow, 34, 879893, https://doi.org/10.1016/j.ijmultiphaseflow.2008.01.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mathis, J. S., W. Rumpl, and K. H. Nordsieck, 1977: The size distribution of interstellar grains. Astrophys. J., 217, 425433, https://doi.org/10.1086/155591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maxey, M., 1987: The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. J. Fluid Mech., 174, 441465, https://doi.org/10.1017/S0022112087000193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mehlig, B., M. Wilkinson, and V. Uski, 2007: Colliding particles in highly turbulent flows. Phys. Fluids, 19, 098107, https://doi.org/10.1063/1.2768931.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meibohm, J., L. Pistone, K. Gustavsson, and B. Mehlig, 2017: Relative velocities in bidisperse turbulent suspensions. Phys. Rev. E, 96, 061102, https://doi.org/10.1103/PhysRevE.96.061102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miles, N. L., J. Verlinde, and E. E. Clothiaux, 2000: Cloud droplet size distributions in low-level stratiform clouds. J. Atmos. Sci., 57, 295311, https://doi.org/10.1175/1520-0469(2000)057<0295:CDSDIL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nenes, A., and J. H. Seinfeld, 2003: Parameterization of cloud droplet formation in global climate models. J. Geophys. Res., 108, 4415, https://doi.org/10.1029/2002JD002911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohno, K., and S. Okuzumi, 2017: A condensation–coalescence cloud model for exoplanetary atmospheres: Formulation and test applications to terrestrial and Jovian clouds. Astrophys. J., 835, 261, https://doi.org/10.3847/1538-4357/835/2/261.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Onishi, R., and A. Seifert, 2016: Reynolds-number dependence of turbulence enhancement on collision growth. Atmos. Chem. Phys., 16, 12 44112 455, https://doi.org/10.5194/acp-16-12441-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perrin, V. E., and H. J. Jonker, 2015: Lagrangian droplet dynamics in the subsiding shell of a cloud using direct numerical simulations. J. Atmos. Sci., 72, 40154028, https://doi.org/10.1175/JAS-D-15-0045.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinsky, M., and A. Khain, 2004: Collisions of small drops in a turbulent flow. Part II: Effects of flow accelerations. J. Atmos. Sci., 61, 19261939, https://doi.org/10.1175/1520-0469(2004)061<1926:COSDIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinsky, M., A. Khain, and M. Shapiro, 2007: Collisions of cloud droplets in a turbulent flow. Part IV: Droplet hydrodynamic interaction. J. Atmos. Sci., 64, 24622482, https://doi.org/10.1175/JAS3952.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinsky, M., A. Khain, and H. Krugliak, 2008: Collisions of cloud droplets in a turbulent flow. Part V: Application of detailed tables of turbulent collision rate enhancement to simulation of droplet spectra evolution. J. Atmos. Sci., 65, 357374, https://doi.org/10.1175/2007JAS2358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pope, S., 2000: Turbulent Flows. Cambridge University Press, 802 pp.

    • Crossref
    • Export Citation
  • Pruppacher, H. R., J. D. Klett, and P. K. Wang, 1998: Microphysics of Clouds and Precipitation. Taylor and Francis, 954 pp.

  • Pumir, A., and M. Wilkinson, 2016: Collisional aggregation due to turbulence. Annu. Rev. Condens. Matter Phys., 7, 141170, https://doi.org/10.1146/annurev-conmatphys-031115-011538.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reade, W. C., and L. R. Collins, 2000: Effect of preferential concentration on turbulent collision rates. Phys. Fluids, 12, 25302540, https://doi.org/10.1063/1.1288515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reuter, G., R. De Villiers, and Y. Yavin, 1988: The collection kernel for two falling cloud drops subjected to random perturbations in a turbulent air flow: A stochastic model. J. Atmos. Sci., 45, 765773, https://doi.org/10.1175/1520-0469(1988)045<0765:TCKFTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riemer, N., and A. Wexler, 2005: Droplets to drops by turbulent coagulation. J. Atmos. Sci., 62, 19621975, https://doi.org/10.1175/JAS3431.1.

  • Rosa, B., H. Parishani, O. Ayala, W. W. Grabowski, and L.-P. Wang, 2013: Kinematic and dynamic collision statistics of cloud droplets from high-resolution simulations. New J. Phys., 15, 045032, https://doi.org/10.1088/1367-2630/15/4/045032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saffman, P. G., and J. S. Turner, 1956: On the collision of drops in turbulent clouds. J. Fluid Mech., 1, 1630, https://doi.org/10.1017/S0022112056000020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saito, I., and T. Gotoh, 2018: Turbulence and cloud droplets in cumulus clouds. New J. Phys., 20, 023001, https://doi.org/10.1088/1367-2630/aaa229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salazar, J. P., J. De Jong, L. Cao, S. H. Woodward, H. Meng, and L. R. Collins, 2008: Experimental and numerical investigation of inertial particle clustering in isotropic turbulence. J. Fluid Mech., 600, 245256, https://doi.org/10.1017/S0022112008000372.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sardina, G., F. Picano, L. Brandt, and R. Caballero, 2015: Continuous growth of droplet size variance due to condensation in turbulent clouds. Phys. Rev. Lett., 115, 184501, https://doi.org/10.1103/PhysRevLett.115.184501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schiller, L., and A. Naumann, 1933: Fundamental calculations in gravitational processing. Z. Ver. Dtsch. Ing., 77, 318320.

  • Seinfeld, J. H., and S. N. Pandis, 2016: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. John Wiley & Sons, 1232 pp.

  • Shaw, R. A., 2003: Particle-turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech., 35, 183227, https://doi.org/10.1146/annurev.fluid.35.101101.161125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, R. A., W. C. Reade, L. R. Collins, and J. Verlinde, 1998: Preferential concentration of cloud droplets by turbulence: Effects on the early evolution of cumulus cloud droplet spectra. J. Atmos. Sci., 55, 19651976, https://doi.org/10.1175/1520-0469(1998)055<1965:PCOCDB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shima, S., K. Kusano, A. Kawano, T. Sugiyama, and S. Kawahara, 2009: The super-droplet method for the numerical simulation of clouds and precipitation: A particle-based and probabilistic microphysics model coupled with a non-hydrostatic model. Quart. J. Roy. Meteor. Soc., 135, 13071320, https://doi.org/10.1002/qj.441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sundaram, S., and L. R. Collins, 1997a: Collision statistics in an isotropic particle-laden turbulent suspension. J. Fluid Mech., 335, 75109, https://doi.org/10.1017/S0022112096004454.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sundaram, S., and L. R. Collins, 1997b: Collision statistics in an isotropic particle-laden turbulent suspension. Part 1. Direct numerical simulations. J. Fluid Mech., 335, 75109, https://doi.org/10.1017/S0022112096004454.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Telford, J. W., 1955: A new aspect of coalescence theory. J. Meteor., 12, 436444, https://doi.org/10.1175/1520-0469(1955)012<0436:ANAOCT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Veysey, J., II, and N. Goldenfeld, 2007: Simple viscous flows: From boundary layers to the renormalization group. Rev. Mod. Phys., 79, 883927, https://doi.org/10.1103/RevModPhys.79.883.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Völk, H. J., F. C. Jones, G. E. Morfill, and S. Röser, 1980: Collisions between grains in a turbulent gas. Astron. Astrophys., 85, 316325.

    • Search Google Scholar
    • Export Citation
  • Voßkuhle, M., A. Pumir, E. Lévêque, and M. Wilkinson, 2014: Prevalence of the sling effect for enhancing collision rates in turbulent suspensions. J. Fluid Mech., 749, 841852, https://doi.org/10.1017/jfm.2014.259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L.-P., and W. W. Grabowski, 2009: The role of air turbulence in warm rain initiation. Atmos. Sci. Lett., 10, 18, https://doi.org/10.1002/asl.210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L.-P., A. S. Wexler, and Y. Zhou, 1998: Statistical mechanical descriptions of turbulent coagulation. Phys. Fluids, 10, 26472651, https://doi.org/10.1063/1.869777.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L.-P., O. Ayala, S. E. Kasprzak, and W. W. Grabowski, 2005: Theoretical formulation of collision rate and collision efficiency of hydrodynamically interacting cloud droplets in turbulent atmosphere. J. Atmos. Sci., 62, 24332450, https://doi.org/10.1175/JAS3492.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L.-P., O. Ayala, Y. Xue, and W. W. Grabowski, 2006: Comments on “droplets to drops by turbulent coagulation.” J. Atmos. Sci., 63, 23972401, https://doi.org/10.1175/JAS3750.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L.-P., O. Ayala, and W. Grabowski, 2007: Effects of aerodynamic interactions on the motion of heavy particles in a bidisperse suspension. J. Turbul., 8, N25, https://doi.org/10.1080/14685240701233426.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilkinson, M., 2016: Large deviation analysis of rapid onset of rain showers. Phys. Rev. Lett., 116, 018501, https://doi.org/10.1103/PhysRevLett.116.018501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilkinson, M., B. Mehlig, and V. Bezuglyy, 2006: Caustic activation of rain showers. Phys. Rev. Lett., 97, 048501, https://doi.org/10.1103/PhysRevLett.97.048501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woittiez, E. J. P., H. J. J. Jonker, and L. M. Portela, 2009: On the combined effects of turbulence and gravity on droplet collisions in clouds: A numerical study. J. Atmos. Sci., 66, 19261943, https://doi.org/10.1175/2005JAS2669.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y., L.-P. Wang, and W. W. Grabowski, 2008: Growth of cloud droplets by turbulent collision–coalescence. J. Atmos. Sci., 65, 331356, https://doi.org/10.1175/2007JAS2406.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zsom, A., and C. P. Dullemond, 2008: A representative particle approach to coagulation and fragmentation of dust aggregates and fluid droplets. Astron. Astrophys., 489, 931941, https://doi.org/10.1051/0004-6361:200809921.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1171 650 135
PDF Downloads 634 156 18