Atmospheric Response to SST Anomalies. Part II: Background-State Dependence, Teleconnections, and Local Effects in Summer

Stephen I. Thomson University of Exeter, Exeter, United Kingdom

Search for other papers by Stephen I. Thomson in
Current site
Google Scholar
PubMed
Close
and
Geoffrey K. Vallis University of Exeter, Exeter, United Kingdom

Search for other papers by Geoffrey K. Vallis in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this paper and its companion, Part I, we explore the response of the atmosphere to sea surface temperature anomalies in different geographical locations and seasons. In Part I, we focused on Northern Hemisphere winter (DJF), whereas in this paper, Part II, we focus on summer (JJA) and interseasonal comparisons. We use two different configurations of the same idealized atmospheric model, constructed using two different configurations of continents and topography. These configurations give rise to slightly different background wind fields and variability within the same season and therefore give a measure of how robust a response is to small changes in the background state. We characterize the types of responses that are found to SST anomalies in the midlatitudes and tropics in JJA and compare these with the two corresponding responses in DJF. We find that the responses to midlatitude SST anomalies in JJA are generally on a much smaller spatial scale than those in DJF. Responses in the tropical Pacific are much less dependent on season, although teleconnections between the tropical Pacific and the North Atlantic are not found in JJA as robustly as they are in DJF. Given insight from our model results, however, we do find some summer periods in reanalysis data where there is a strong association between the tropical Pacific and the summer North Atlantic Oscillation. We discuss the reasons for these effects and the implications for Northern Hemisphere seasonal prediction in summer.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Stephen I. Thomson, stephen.i.thomson@gmail.com

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-17-0297.1

Abstract

In this paper and its companion, Part I, we explore the response of the atmosphere to sea surface temperature anomalies in different geographical locations and seasons. In Part I, we focused on Northern Hemisphere winter (DJF), whereas in this paper, Part II, we focus on summer (JJA) and interseasonal comparisons. We use two different configurations of the same idealized atmospheric model, constructed using two different configurations of continents and topography. These configurations give rise to slightly different background wind fields and variability within the same season and therefore give a measure of how robust a response is to small changes in the background state. We characterize the types of responses that are found to SST anomalies in the midlatitudes and tropics in JJA and compare these with the two corresponding responses in DJF. We find that the responses to midlatitude SST anomalies in JJA are generally on a much smaller spatial scale than those in DJF. Responses in the tropical Pacific are much less dependent on season, although teleconnections between the tropical Pacific and the North Atlantic are not found in JJA as robustly as they are in DJF. Given insight from our model results, however, we do find some summer periods in reanalysis data where there is a strong association between the tropical Pacific and the summer North Atlantic Oscillation. We discuss the reasons for these effects and the implications for Northern Hemisphere seasonal prediction in summer.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Stephen I. Thomson, stephen.i.thomson@gmail.com

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-17-0297.1

Save
  • Bony, S., K. M. Lau, and Y. C. Sud, 1997: Sea surface temperature and large-scale circulation influences on tropical greenhouse effect and cloud radiative forcing. J. Climate, 10, 20552077, https://doi.org/10.1175/1520-0442(1997)010<2055:SSTALS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and P. G. Drazin, 1961: Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66, 83109, https://doi.org/10.1029/JZ066i001p00083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., G. Magnusdottir, R. Saravanan, and A. Phillips, 2004: The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part II: Direct and indirect components of the response. J. Climate, 17, 877889, https://doi.org/10.1175/1520-0442(2004)017<0877:TEONAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, B., R. T. Sutton, T. Woollings, and K. Hodges, 2013: Variability of the North Atlantic summer storm track: Mechanisms and impacts on European climate. Environ. Res. Lett., 8, 034037, https://doi.org/10.1088/1748-9326/8/3/034037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Folland, C. K., J. Knight, H. W. Linderholm, D. Fereday, S. Ineson, and J. W. Hurrel, 2009: The summer North Atlantic oscillation: Past, present, and future. J. Climate, 22, 10821103, https://doi.org/10.1175/2008JCLI2459.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., 1985: Sea surface temperature anomalies, planetary waves, and air-sea feedback in the middle latitudes. Rev. Geophys., 23, 357390, https://doi.org/10.1029/RG023i004p00357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gastineau, G., and C. Frankignoul, 2015: Influence of the North Atlantic SST variability on the atmospheric circulation during the twentieth century. J. Climate, 28, 13961416, https://doi.org/10.1175/JCLI-D-14-00424.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghosh, R., W. A. Müller, J. Baehr, and J. Bader, 2017: Impact of observed North Atlantic multidecadal variations to European summer climate: A linear baroclinic response to surface heating. Climate Dyn., 48, 35473563, https://doi.org/10.1007/s00382-016-3283-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodson, D. L., R. T. Sutton, C. Cassou, N. Keenlyside, Y. Okumura, and T. Zhou, 2010: Climate impacts of recent multidecadal changes in Atlantic Ocean sea surface temperature: A multimodel comparison. Climate Dyn., 34, 10411058, https://doi.org/10.1007/s00382-009-0571-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurwitz, M. M., P. A. Newman, and C. I. Garfinkel, 2012: On the influence of North Pacific sea surface temperature on the Arctic winter climate. J. Geophys. Res., 117, D19110, https://doi.org/10.1029/2012JD017819.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., W. A. Robinson, I. Bladé, N. M. J. Hall, S. Peng, and R. Sutton, 2002: Atmospheric GCM response to extratropical SST anomalies: Synthesis and evaluation. J. Climate, 15, 22332256, https://doi.org/10.1175/1520-0442(2002)015<2233:AGRTES>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S. K., C. Wang, and B. E. Mapes, 2009: A simple atmospheric model of the local and teleconnection responses to tropical heating anomalies. J. Climate, 22, 272284, https://doi.org/10.1175/2008JCLI2303.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543, https://doi.org/10.2151/jmsj1965.44.1_25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKinnon, K. A., A. Rhines, M. P. Tingley, and P. Huybers, 2016: Long-lead predictions of eastern United States hot days from Pacific sea surface temperatures. Nat. Geosci., 9, 389394, https://doi.org/10.1038/ngeo2687.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minobe, S., A. Kuwano-Yoshida, N. Komori, S.-P. Xie, and R. J. Small, 2008: Influence of the Gulf Stream on the troposphere. Nature, 452, 206209, https://doi.org/10.1038/nature06690.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minobe, S., M. Miyashita, A. Kuwano-Yoshida, H. Tokinaga, and S. P. Xie, 2010: Atmospheric response to the Gulf Stream: Seasonal variations. J. Climate, 23, 36993719, https://doi.org/10.1175/2010JCLI3359.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ossó, A., R. Sutton, L. Shaffrey, and B. Dong, 2017: Observational evidence of European summer weather patterns predictable from spring. Proc. Natl. Acad. Sci. USA, 115, 5963, https://doi.org/10.1073/pnas.1713146114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, S., and J. S. Whitaker, 1999: Mechanisms determining the atmospheric response to midlatitude SST anomalies. J. Climate, 12, 13931408, https://doi.org/10.1175/1520-0442(1999)012<1393:MDTART>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, S., and W. A. Robinson, 2001: Relationships between atmospheric internal variability and the responses to an extratropical SST anomaly. J. Climate, 14, 29432959, https://doi.org/10.1175/1520-0442(2001)014<2943:RBAIVA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, S., W. A. Robinson, and S. Li, 2003: Mechanisms for the NAO responses to the North Atlantic SST tripole. J. Climate, 16, 19872004, https://doi.org/10.1175/1520-0442(2003)016<1987:MFTNRT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. Parker, E. Horton, C. Folland, L. Alexander, D. Rowell, E. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saeed, S., N. Van Lipzig, W. A. Müller, F. Saeed, and D. Zanchettin, 2014: Influence of the circumglobal wave-train on European summer precipitation. Climate Dyn., 43, 503515, https://doi.org/10.1007/s00382-013-1871-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and Coauthors, 2017: Tropical rainfall, Rossby waves and regional winter climate predictions. Quart. J. Roy. Meteor. Soc., 143, 111, https://doi.org/10.1002/qj.2910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smirnov, D., M. Newman, M. A. Alexander, Y. O. Kwon, and C. Frankignoul, 2015: Investigating the local atmospheric response to a realistic shift in the Oyashio sea surface temperature front. J. Climate, 28, 11261147, https://doi.org/10.1175/JCLI-D-14-00285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., and D. L. R. Hodson, 2005: Atlantic Ocean forcing of North American and European summer climate. Science, 309, 115118, https://doi.org/10.1126/science.1109496.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., and D. L. R. Hodson, 2007: Climate response to basin-scale warming and cooling of the North Atlantic Ocean. J. Climate, 20, 891907, https://doi.org/10.1175/JCLI4038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., D. Williamson, and F. Zwiers, 2000: The sea surface temperature and sea-ice concentration boundary conditions for AMIP II simulations. PCMDI Rep. 60, 25 pp.

  • Thomson, S. I., and G. K. Vallis, 2018: Atmospheric response to SST anomalies. Part I: Background-state dependence, teleconnections, and local effects in winter. J. Atmos. Sci., 75, 41074124, 10.1175/JAS-D-17-0297.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2017: Atmospheric and Oceanic Fluid Dynamics. 2nd ed. Cambridge University Press, 964 pp., https://doi.org/10.1017/9781107588417.

    • Crossref
    • Export Citation
  • Vallis, G. K., and Coauthors, 2018: Isca, v1.0: A framework for the global modelling of the atmospheres of Earth and other planets at varying levels of complexity. Geosci. Model Dev., 11, 843859, https://doi.org/10.5194/gmd-11-843-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wills, S. M., D. W. J. Thompson, and L. M. Ciasto, 2016: On the observed relationships between variability in Gulf Stream sea surface temperatures and the atmospheric circulation over the North Atlantic. J. Climate, 29, 37193730, https://doi.org/10.1175/JCLI-D-15-0820.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wulff, C. O., R. J. Greatbatch, D. I. Domeisen, G. Gollan, and F. Hansen, 2017: Tropical forcing of the summer East Atlantic pattern. Geophys. Res. Lett., 44, 11 16611 173, https://doi.org/10.1002/2017GL075493.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 659 215 15
PDF Downloads 471 108 5