Abstract
Latent heat release from condensational heating has been recognized as one of the dominating energy sources of a tropical cyclone. Here we argue that other microphysical processes may also play an important role. From an analysis of a real-case simulation of Hurricane Katrina (2005), it was found that cooling from evaporation and melting of some frozen hydrometeors radially outside the eyewall region can have similar magnitudes as condensational heating. Based on this finding, idealized thermally forced experiments were performed. The specified heating and cooling functions mimic those found in the Hurricane Katrina run. The results indicated that the addition of cooling enhances the lower-level inward radial winds, which in turn increases the acceleration of the lower-level tangential winds through an enhanced transport of absolute vorticity. Sensitivity experiments on varying the structure of the cooling functions and the background state of the vortex demonstrate that the lower-level tangential wind acceleration is more sensitive to changes in the vertical structure and location of the cooling than the radial characteristics. In addition, the lower-level acceleration is sensitive to variations in the inertial and static stabilities rather than the vertical tangential wind shear of the initial vortex and its environment.
Current affiliation: Air Quality Research Division, Environment and Climate Change Canada, Dorval, Quebec, Canada.
© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).