Shallow-to-Deep Transition of Continental Moist Convection: Cold Pools, Surface Fluxes, and Mesoscale Organization

Marcin J. Kurowski Jet Propulsion Laboratory, California Institute of Technology, Pasadena, and Joint Institute for Regional Earth System Science and Engineering, Los Angeles, California

Search for other papers by Marcin J. Kurowski in
Current site
Google Scholar
PubMed
Close
,
Kay Suselj Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Kay Suselj in
Current site
Google Scholar
PubMed
Close
,
Wojciech W. Grabowski National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Wojciech W. Grabowski in
Current site
Google Scholar
PubMed
Close
, and
Joao Teixeira Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Joao Teixeira in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Large-eddy simulation is used to investigate the effects of cold pools driven by rain evaporation on the shallow-to-deep convection transition over land. The physically consistent methodologies are developed to obtain a time-dependent reference ensemble without cold pools and to apply interactive surface heat fluxes without modeling of surface energy and water budgets. Three different simulation ensembles are contrasted. The reference ensemble, in the spirit of one-dimensional single-column models, eliminates cold pools by horizontally homogenizing negative buoyancy production due to rain evaporation. The additional ensembles complement the reference cold-pool-free ensemble by including cold pools and by applying either interactive or prescribed surface fluxes. Contrasting these ensembles suggests possible improvements of convection parameterization in large-scale models of weather and climate. Without cold pools, the reference ensemble preserves key features of buoyancy-driven cellular convection associated with a field of convective plumes, as assumed in a typical convection parameterization. With cold pools, a significant enhancement of surface heat and moisture fluxes and about an hour delay of their daily maximum is simulated. Cold pools enhance near-surface temperature and moisture standard deviations as well as maxima of the near-surface updraft velocity. They also lead to the reduction of cloud lateral entrainment, deeper vertical development of the cloud layer, and a few-times-larger accumulated surface precipitation. Interactive surface fluxes provide a damping mechanism that noticeably suppresses all these effects. Perhaps surprisingly, cold pools do not significantly change the cloud-base convective mass flux that approximately follows the evolution of surface heat fluxes.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Marcin J. Kurowski, marcin.j.kurowski@jpl.nasa.gov

Abstract

Large-eddy simulation is used to investigate the effects of cold pools driven by rain evaporation on the shallow-to-deep convection transition over land. The physically consistent methodologies are developed to obtain a time-dependent reference ensemble without cold pools and to apply interactive surface heat fluxes without modeling of surface energy and water budgets. Three different simulation ensembles are contrasted. The reference ensemble, in the spirit of one-dimensional single-column models, eliminates cold pools by horizontally homogenizing negative buoyancy production due to rain evaporation. The additional ensembles complement the reference cold-pool-free ensemble by including cold pools and by applying either interactive or prescribed surface fluxes. Contrasting these ensembles suggests possible improvements of convection parameterization in large-scale models of weather and climate. Without cold pools, the reference ensemble preserves key features of buoyancy-driven cellular convection associated with a field of convective plumes, as assumed in a typical convection parameterization. With cold pools, a significant enhancement of surface heat and moisture fluxes and about an hour delay of their daily maximum is simulated. Cold pools enhance near-surface temperature and moisture standard deviations as well as maxima of the near-surface updraft velocity. They also lead to the reduction of cloud lateral entrainment, deeper vertical development of the cloud layer, and a few-times-larger accumulated surface precipitation. Interactive surface fluxes provide a damping mechanism that noticeably suppresses all these effects. Perhaps surprisingly, cold pools do not significantly change the cloud-base convective mass flux that approximately follows the evolution of surface heat fluxes.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Marcin J. Kurowski, marcin.j.kurowski@jpl.nasa.gov
Save
  • Arakawa, A., 2004: The cumulus parameterization problem: Past, present, and future. J. Climate, 17, 24932525, https://doi.org/10.1175/1520-0442(2004)017<2493:RATCPP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Böing, S. J., H. J. J. Jonker, A. P. Siebesma, and W. W. Grabowski, 2012: Influence of the subcloud layer on the development of a deep convective ensemble. J. Atmos. Sci., 69, 26822698, https://doi.org/10.1175/JAS-D-11-0317.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byers, H. R., and R. R. Braham Jr., 1949: The Thunderstorm. U.S. Government Printing Office, 287 pp.

  • Cheinet, S., 2003: A multiple mass-flux parameterization for the surface-generated convection. Part I: Dry plumes. J. Atmos. Sci., 60, 23132327, https://doi.org/10.1175/1520-0469(2003)060<2313:AMMPFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheinet, S., 2004: A multiple mass flux parameterization for the surface-generated convection. Part II: Cloudy cores. J. Atmos. Sci., 61, 10931113, https://doi.org/10.1175/1520-0469(2004)061<1093:AMMFPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., G. H. Bryan, and S. C. van den Heever, 2011: Storm and Cloud Dynamics. 2nd ed. Academic Press, 809 pp.

    • Crossref
    • Export Citation
  • D’Andrea, F., P. Gentine, A. K. Betts, and B. R. Lintner, 2014: Triggering deep convection with a probabilistic plume model. J. Atmos. Sci., 71, 38813901, https://doi.org/10.1175/JAS-D-13-0340.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1970: Convective velocity and temperature scales for the unstable planetary boundary layer and for Rayleigh convection. J. Atmos. Sci., 27, 12111213, https://doi.org/10.1175/1520-0469(1970)027<1211:CVATSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., J. Wu, and Y. Chen, 2012: Characteristics of mesoscale organization in WRF simulations of convection during TWP-ICE. J. Climate, 25, 56665688, https://doi.org/10.1175/JCLI-D-11-00422.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drager, A. J., and S. C. van den Heever, 2017: Characterizing convective cold pools. J. Adv. Model. Earth Syst., 9, 10911115, https://doi.org/10.1002/2016MS000788.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, Z., S. Hagos, A. K. Rowe, C. D. Burleyson, M. N. Martini, and S. P. de Szoeke, 2015: Mechanisms of convective cloud organization by cold pools over tropical warm ocean during the AMIE/DYNAMO field campaign. J. Adv. Model. Earth Syst., 7, 357381, https://doi.org/10.1002/2014MS000384.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gentine, P., A. Garelli, S.-B. Park, J. Nie, G. Torri, and Z. Kuang, 2016: Role of surface heat fluxes underneath cold pools. Geophys. Res. Lett., 43, 874883, https://doi.org/10.1002/2015GL067262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glenn, I. B., and S. K. Krueger, 2017: Connections matter: Updraft merging in organized tropical deep convection. Geophys. Res. Lett., 44, 70877094, https://doi.org/10.1002/2017GL074162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2015: Untangling microphysical impacts on deep convection applying a novel modeling methodology. J. Atmos. Sci., 72, 24462464, https://doi.org/10.1175/JAS-D-14-0307.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and Coauthors, 2006: Daytime convective development over land: A model intercomparison based on LBA observations. Quart. J. Roy. Meteor. Soc., 132, 317344, https://doi.org/10.1256/qj.04.147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grandpeix, J.-Y., J.-P. Lafore, and F. Cheruy, 2010: A density current parameterization coupled with Emanuel’s convection scheme. Part II: 1D simulations. J. Atmos. Sci., 67, 898922, https://doi.org/10.1175/2009JAS3045.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grant, L. D., and S. C. van den Heever, 2016: Cold pool dissipation. J. Geophys. Res. Atmos., 121, 11381155, https://doi.org/10.1002/2015JD023813.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guichard, F., and Coauthors, 2004: Modelling the diurnal cycle of deep precipitating convection over land with cloud-resolving models and single-column models. Quart. J. Roy. Meteor. Soc., 130, 31393172, https://doi.org/10.1256/qj.03.145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hohenegger, K., and C. S. Bretherton, 2011: Simulating deep convection with a shallow convection scheme. Atmos. Chem. Phys., 11, 10 38910 406, https://doi.org/10.5194/acp-11-10389-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., and A. K. Betts, 1981: Convection in GATE. Rev. Geophys., 19, 541576, https://doi.org/10.1029/RG019i004p00541.

  • Khairoutdinov, M., and D. Randall, 2006: High-resolution simulation of shallow-to-deep convection transition over land. J. Atmos. Sci., 63, 34213436, https://doi.org/10.1175/JAS3810.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuang, Z., and C. S. Bretherton, 2006: A mass-flux scheme view of a high-resolution simulation of a transition from shallow to deep cumulus convection. J. Atmos. Sci., 63, 18951909, https://doi.org/10.1175/JAS3723.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurowski, M. J., W. W. Grabowski, and P. K. Smolarkiewicz, 2014: Anelastic and compressible simulation of moist deep convection. J. Atmos. Sci., 71, 37673787, https://doi.org/10.1175/JAS-D-14-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., D. Vickers, J. Sun, N. O. Jensen, H. Jørgensen, E. Pardygak, and H. Fernando, 2001: Determination of the surface drag coefficient. Bound.-Layer Meteor., 99, 249276, https://doi.org/10.1023/A:1018915228170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B., and R. Neale, 2011: Parameterizing convective organization to escape the entrainment dilemma. J. Adv. Model. Earth Syst., 3, M06004, https://doi.org/10.1029/2011MS000042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, P. J., 1989: Large-eddy simulation of the convective atmospheric boundary layer. J. Atmos. Sci., 46, 14921516, https://doi.org/10.1175/1520-0469(1989)046<1492:LESOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., and P. P. Sullivan, 1994: A comparison of shear- and buoyancy-driven planetary boundary layer flows. J. Atmos. Sci., 51, 9991022, https://doi.org/10.1175/1520-0469(1994)051<0999:ACOSAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. M. Yaglom, 1971: Statistical Fluid Mechanics. MIT Press, 769 pp.

  • Neggers, R. A. J., 2009: A dual mass flux framework for boundary layer convection. Part II: Clouds. J. Atmos. Sci., 66, 14891506, https://doi.org/10.1175/2008JAS2636.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nie, J., and Z. Kuang, 2012: Responses of shallow cumulus convection to large-scale temperature and moisture perturbations: A comparison of large-eddy simulations and a convective parameterization based on stochastically entraining parcels. J. Atmos. Sci., 69, 19361956, https://doi.org/10.1175/JAS-D-11-0279.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Redelsperger, J.-L., F. Guichard, and S. Mondon, 2000: A parameterization of mesoscale enhancement of surface fluxes for large-scale models. J. Climate, 13, 402421, https://doi.org/10.1175/1520-0442(2000)013<0402:APOMEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rio, C., F. Hourdin, J.-Y. Grandpeix, and J.-P. Lafore, 2009: Shifting the diurnal cycle of parameterized deep convection over land. Geophys. Res. Lett., 36, L07809, https://doi.org/10.1029/2008GL036779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, https://doi.org/10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlemmer, L., and C. Hohenegger, 2014: The formation of wider and deeper clouds as a result of cold-pool dynamics. J. Atmos. Sci., 71, 28422858, https://doi.org/10.1175/JAS-D-13-0170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and Coauthors, 2003: A large eddy simulation intercomparison study of shallow cumulus convection. J. Atmos. Sci., 60, 12011219, https://doi.org/10.1175/1520-0469(2003)60<1201:ALESIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

    • Crossref
    • Export Citation
  • Sušelj, K., J. Teixeira, and G. Matheou, 2012: Eddy diffusivity/mass flux and shallow cumulus boundary layer: An updraft PDF multiple mass flux scheme. J. Atmos. Sci., 69, 15131533, https://doi.org/10.1175/JAS-D-11-090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sušelj, K., J. Teixeira, and D. Chung, 2013: A unified model for moist convective boundary layers based on a stochastic eddy-diffusivity/mass-flux parameterization. J. Atmos. Sci., 70, 19291953, https://doi.org/10.1175/JAS-D-12-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teixeira, J., and Coauthors, 2008: Parameterization of the atmospheric boundary layer: A view from just above the inversion. Bull. Amer. Meteor. Soc., 89, 453458, https://doi.org/10.1175/BAMS-89-4-453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L., N. Malap, W. W. Grabowski, K. Dani, and T. V. Prabha, 2018: Convective environment in pre-monsoon and monsoon conditions over the Indian subcontinent: The impact of surface forcing. Atmos. Chem. Phys., 18, 74737488, https://doi.org/10.5194/acp-18-7473-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2001: Organization of tropical convection in low vertical wind shears: The role of cold pools. J. Atmos. Sci., 58, 16501672, https://doi.org/10.1175/1520-0469(2001)058<1650:OOTCIL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torri, G., Z. Kuang, and Y. Tian, 2015: Mechanisms for convection triggering by cold pools. Geophys. Res. Lett., 42, 19431950, https://doi.org/10.1002/2015GL063227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., W. C. Skamarock, and M. A. LeMone, 1997: Structure and evolution of the 22 February 1993 TOGA COARE squall line: Organization mechanisms inferred from numerical simulation. J. Atmos. Sci., 54, 386407, https://doi.org/10.1175/1520-0469(1997)054<0386:SAEOTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Heerwaarden, C. C., and J. P. Mellado, 2016: Growth and decay of a convective boundary layer over a surface with a constant temperature. J. Atmos. Sci., 73, 21652177, https://doi.org/10.1175/JAS-D-15-0315.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and P. V. Hobbs, 2006: Atmospheric Science: An Introductory Survey. Academic Press, 504 pp.

  • Wyngaard, J. C., O. R. Coté, and Y. Izumi, 1971: Local free convection, similarity, and the budgets of shear stress and heat flux. J. Atmos. Sci., 28, 11711182, https://doi.org/10.1175/1520-0469(1971)028<1171:LFCSAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1450 725 404
PDF Downloads 1121 204 13