Relationship between Turbulence and Drizzle in Continental and Marine Low Stratiform Clouds

Paloma Borque Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada, and Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Paloma Borque in
Current site
Google Scholar
PubMed
Close
,
Edward P. Luke Brookhaven National Laboratory, Upton, New York

Search for other papers by Edward P. Luke in
Current site
Google Scholar
PubMed
Close
,
Pavlos Kollias Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada, and Brookhaven National Laboratory, Upton, New York, and School of Marine and Atmospheric Sciences, Stony Brook University, State University of New York, Stony Brook, New York

Search for other papers by Pavlos Kollias in
Current site
Google Scholar
PubMed
Close
, and
Fan Yang Brookhaven National Laboratory, Upton, New York

Search for other papers by Fan Yang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Turbulence and drizzle-rate measurements from a large dataset of marine and continental low stratiform clouds are presented. Turbulence peaks at cloud base over land and near cloud top over the ocean. For both regions, eddy dissipation rate values of 10−5–10−2 m2 s−3 are observed. Surface-based measurements of cloud condensation nuclei number concentration NCCN and liquid water path (LWP) are used to estimate the precipitation susceptibility S0. Results show that positive S0 values are found at low turbulence, consistent with the principle that aerosols suppress precipitation formation, whereas S0 is smaller, and can be negative, in a more turbulent environment. Under similar macrophysical conditions, especially for medium to high LWP, high (low) turbulence is likely to lessen (promote) the suppression effect of high NCCN on precipitation. Overall, the turbulent effect on S0 is stronger in continental than marine stratiform clouds. These observational findings are consistent with recent analytical prediction for a turbulence-broadening effect on cloud droplet size distribution.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Paloma Borque, paloma@illinois.edu

Abstract

Turbulence and drizzle-rate measurements from a large dataset of marine and continental low stratiform clouds are presented. Turbulence peaks at cloud base over land and near cloud top over the ocean. For both regions, eddy dissipation rate values of 10−5–10−2 m2 s−3 are observed. Surface-based measurements of cloud condensation nuclei number concentration NCCN and liquid water path (LWP) are used to estimate the precipitation susceptibility S0. Results show that positive S0 values are found at low turbulence, consistent with the principle that aerosols suppress precipitation formation, whereas S0 is smaller, and can be negative, in a more turbulent environment. Under similar macrophysical conditions, especially for medium to high LWP, high (low) turbulence is likely to lessen (promote) the suppression effect of high NCCN on precipitation. Overall, the turbulent effect on S0 is stronger in continental than marine stratiform clouds. These observational findings are consistent with recent analytical prediction for a turbulence-broadening effect on cloud droplet size distribution.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Paloma Borque, paloma@illinois.edu
Save
  • Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 12271230, https://doi.org/10.1126/science.245.4923.1227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Austin, P., Y. Wang, R. Pincus, and V. Kujala, 1995: Precipitation in stratocumulus clouds: Observations and modelling results. J. Atmos. Sci., 52, 23292352, https://doi.org/10.1175/1520-0469(1995)052<2329:PISCOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ayala, O., B. Rosa, and L. P. Wang, 2008: Effects of turbulence on the geometric collision rate of sedimenting droplets. Part 2. Theory and parameterization. New J. Phys., 10, 075016, https://doi.org/10.1088/1367-2630/10/7/075016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, M. B., 1993: Variability in concentration of cloud condensation nuclei in the marine cloud–topped boundary layer. Tellus, 45B, 458472, https://doi.org/10.3402/tellusb.v45i5.15742.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borque, P., P. Kollias, and S. Giangrande, 2014: First observations of tracking clouds using scanning ARM cloud radars. J. Appl. Meteor. Climatol., 53, 27322746, https://doi.org/10.1175/JAMC-D-13-0182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borque, P., E. Luke, and P. Kollias, 2016: On the unified estimation of turbulence eddy dissipation rate using Doppler cloud radars and lidars. J. Geophys. Res. Atmos., 121, 59725989, https://doi.org/10.1002/2015JD024543.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brenguier, J.-L., and R. Wood, 2009: Observational strategies from the micro- to mesoscale. Clouds in the Perturbed Climate System: Their Relationship to Energy Balance, Atmospheric Dynamics, and Precipitation, J. Heintzenberg and R. J. Charlson, Eds., Strüngmann Forum Reports, Vol. 2, MIT Press, 487–510, https://doi.org/10.7551/mitpress/9780262012874.003.0021.

    • Search Google Scholar
    • Export Citation
  • Chandrakar, K. K., W. Cantrell, K. Chang, D. Ciochetto, D. Niedermeier, M. Ovchinnikov, R. A. Shaw, and F. Yang, 2016: Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions. Proc. Natl. Acad. Sci. USA, 113, 14 24314 248, https://doi.org/10.1073/pnas.1612686113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comstock, K. K., R. Wood, S. E. Yuter, and C. S. Bretherton, 2004: Reflectivity and rain rate in and below drizzling stratocumulus. Quart. J. Roy. Meteor. Soc., 130, 28912919, https://doi.org/10.1256/qj.03.187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., 1989: Effects of variable droplet growth histories on droplet size distributions. Part I: Theory. J. Atmos. Sci., 46, 13011311, https://doi.org/10.1175/1520-0469(1989)046<1301:EOVDGH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delobbe, L., and H. Gallée, 1998: Simulation of marine stratocumulus: Effect of precipitation parameterization and sensitivity to droplet number concentration. Bound.-Layer Meteor., 89, 75107, https://doi.org/10.1023/A:1001732526989.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eaton, J. K., and J. R. Fessler, 1994: Preferential concentration of particles by turbulence. Int. J. Multiphase Flow, 20, 169209, https://doi.org/10.1016/0301-9322(94)90072-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feingold, G., and H. Siebert, 2009: Cloud–aerosol interactions from the micro to the cloud scale. Clouds in the Perturbed Climate System: Their Relationship to Energy Balance, Atmospheric Dynamics, and Precipitation, J. Heintzenberg and R. J. Charlson, Eds., Strüngmann Forum Reports, Vol. 2, MIT Press, 319–338.

    • Crossref
    • Export Citation
  • Feingold, G., A. S. Frisch, B. Stevens, and W. R. Cotton, 1999: On the relationship among cloud turbulence, droplet formation and drizzle as viewed by Doppler radar, microwave radiometer and lidar. J. Geophys. Res., 104, 22 19522 203, https://doi.org/10.1029/1999JD900482.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feingold, G., A. McComiskey, D. Rosenfeld, and A. Sorooshian, 2013: On the relationship between cloud contact time and precipitation susceptibility to aerosol. J. Geophys. Res. Atmos., 118, 10 54410 554, https://doi.org/10.1002/jgrd.50819.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franklin, C. N., P. A. Vaillancourt, and M. K. Yau, 2007: Statistics and parameterizations of the effect of turbulence on the geometric collision kernel of cloud droplets. J. Atmos. Sci., 64, 938954, https://doi.org/10.1175/JAS3872.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaustad, K., and L. Riihimaki, 1996: Microwave radiometer retrievals (MWRRET) of cloud liquid water and precipitable water vapor. ARM Data Center, accessed 1 March 2016, https://doi.org/10.5439/1285691.

    • Crossref
    • Export Citation
  • Grabowski, W. W., P. Dziekan, and H. Pawlowska, 2018: Lagrangian condensation microphysics with Twomey CCN activation. Geosci. Model Dev., 11, 103120, https://doi.org/10.5194/gmd-11-103-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hageman, D., and Coauthors, 1996: Aerosol Observing System (AOS): Aerosol data, 1-min, mentor-QC applied. ARM Data Center, accessed 1 March 2016, https://doi.org/10.5439/1025259.

    • Crossref
    • Export Citation
  • Hardin, J., D. Nelson, Iosif, B. Isom, K. Johnson, A. Matthews, and N. Bharadwaj, 1990: W-band (95 GHz) ARM Cloud Radar. ARM Data Center, accessed 1 March 2016, https://doi.org/10.5439/1025317.

    • Crossref
    • Export Citation
  • Hudson, J. G., and S. Noble, 2014: CCN and vertical velocity influences on droplet concentrations and supersaturations in clean and polluted stratus clouds. J. Atmos. Sci., 71, 312331, https://doi.org/10.1175/JAS-D-13-086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, E., B. A. Albrecht, A. Sorooshian, P. Zuidema, and H. H. Jonsson, 2016: Precipitation susceptibility in marine stratocumulus and shallow cumulus from airborne measurements. Atmos. Chem. Phys., 16, 11 39511 413, https://doi.org/10.5194/acp-16-11395-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A., M. Ovtchinnikov, M. Pinsky, A. Pokrovsky, and H. Krugliak, 2000: Notes on the state-of-the-art numerical modeling of cloud microphysics. Atmos. Res., 55, 159224, https://doi.org/10.1016/S0169-8095(00)00064-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A., M. Pinsky, T. Elperin, N. Kleeorin, I. Rogachevskii, and A. Kostinski, 2007: Critical comments to results of investigations of drop collisions in turbulent clouds. Atmos. Res., 86, 120, https://doi.org/10.1016/j.atmosres.2007.05.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V. I., and J. A. Curry, 1999: A simple analytical model of aerosol properties with account for hygroscopic growth: 1. Equilibrium size spectra and cloud condensation nuclei activity spectra. J. Geophys. Res., 104, 21752184, https://doi.org/10.1029/98JD02673.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kollias, P., and Coauthors, 2014: Scanning ARM cloud radars. Part II: Data quality control and processing. J. Atmos. Oceanic Technol., 31, 583598, https://doi.org/10.1175/JTECH-D-13-00045.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolmogorov, A. N., 1941: Dissipation of energy in locally isotropic turbulence. Dokl. Akad. Nauk SSSR, 32, 1618.

  • Korolev, A., M. Pinsky, and A. Khain, 2013: A new mechanism of droplet size distribution broadening during diffusional growth. J. Atmos. Sci., 70, 20512071, https://doi.org/10.1175/JAS-D-12-0182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., P. H. Daum, and S. S. Yum, 2006: Analytical expression for the relative dispersion of the cloud droplet size distribution. Geophys. Res. Lett., 33, L02810, https://doi.org/10.1029/2005GL024052.

    • Search Google Scholar
    • Export Citation
  • Mann, J. A. L., J. C. Chiu, R. J. Hogan, E. J. O’Connor, T. S. L’Ecuyer, T. H. M. Stein, and A. Jefferson, 2014: Aerosol impacts on drizzle properties in warm clouds from ARM Mobile Facility maritime and continental deployments. J. Geophys. Res. Atmos., 119, 41364148, https://doi.org/10.1002/2013JD021339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, G. M., D. W. Johnson, and A. Spice, 1994: The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds. J. Atmos. Sci., 51, 18231842, https://doi.org/10.1175/1520-0469(1994)051<1823:TMAPOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mather, J. H., and J. W. Voyles, 2013: The ARM Climate Research Facility: A review of structure and capabilities. Bull. Amer. Meteor. Soc., 94, 377392, https://doi.org/10.1175/BAMS-D-11-00218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, S., 1987: A model of drizzle growth in warm, turbulent, stratiform clouds. Quart. J. Roy. Meteor. Soc., 113, 11411170, https://doi.org/10.1002/qj.49711347805.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Connor, E. J., R. J. Hogan, and A. J. Illingworth, 2005: Retrieving stratocumulus drizzle parameters using Doppler radar and lidar. J. Appl. Meteor., 44, 1427, https://doi.org/10.1175/JAM-2181.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pawlowska, H., and J.-L. Brenguier, 2003: An observational study of drizzle formation in stratocumulus clouds for general circulation model (GCM) parameterizations. J. Geophys. Res., 108, 8630, https://doi.org/10.1029/2002JD002679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinsky, M. B., A. P. Khain, B. Grits, and M. Shapiro, 2006: Collisions of small drops in a turbulent flow. Part III: Relative droplet fluxes and swept volumes. J. Atmos. Sci., 63, 21232139, https://doi.org/10.1175/JAS3730.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinsky, M. B., A. P. Khain, and H. Krugliak, 2008: Collisions of cloud droplets in a turbulent flow. Part V: Application of detailed tables of turbulent collision rate enhancement to simulation of droplet spectra evolution. J. Atmos. Sci., 65, 357374, https://doi.org/10.1175/2007JAS2358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 2010: Microphysics of Clouds and Precipitation. L. A. Atmospheric and Oceanographic Sciences Library, Vol. 18, Springer, 954 pp., https://doi.org/10.1007/978-0-306-48100-0.

    • Crossref
    • Export Citation
  • Roberts, G., and A. Nenes, 2005: A continuous-flow streamwise thermal-gradient CCN chamber for atmospheric measurements. Aerosol Sci. Technol., 39, 206221, https://doi.org/10.1080/027868290913988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terai, C. R., R. Wood, D. C. Leon, and P. Zuidema, 2012: Does precipitation susceptibility vary with increasing cloud thickness in marine stratocumulus? Atmos. Chem. Phys., 12, 45674583, https://doi.org/10.5194/acp-12-4567-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaillancourt, P. A., M. K. Yau, P. Bartello, and W. W. Grabowski, 2002: Microscopic approach to cloud droplet growth by condensation. Part II: Turbulence, clustering, and condensational growth. J. Atmos. Sci., 59, 34213435, https://doi.org/10.1175/1520-0469(2002)059<3421:MATCDG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Zanten, M. C., B. Stevens, G. Vali, and D. Lenschow, 2005: Observations of drizzle in nocturnal marine stratocumulus. J. Atmos. Sci., 62, 88106, https://doi.org/10.1175/JAS-3355.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L.-P., O. Ayala, B. Rosa, and W. W. Grabowski, 2008: Turbulent collision efficiency of heavy particles relevant to cloud droplets. New J. Phys., 10, 075013, https://doi.org/10.1088/1367-2630/10/7/075013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., 2005: Drizzle in stratiform boundary layer clouds. Part I: Vertical and horizontal structure. J. Atmos. Sci., 62, 30113033, https://doi.org/10.1175/JAS3529.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., and Coauthors, 2015: Clouds, aerosols, and precipitation in the marine boundary layer: An ARM Mobile Facility deployment. Bull. Amer. Meteor. Soc., 96, 419440, https://doi.org/10.1175/BAMS-D-13-00180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and Coauthors, 2008: The convective and orographically induced precipitation study: A research and development project of the World Weather Research Program for improving quantitative precipitation forecasting in low-mountain regions. Bull. Amer. Meteor. Soc., 89, 14771486, https://doi.org/10.1175/1520-0477-89.10.1469.

    • Search Google Scholar
    • Export Citation
  • Yang, F., R. Shaw, and H. Xue, 2016: Conditions for superadiabatic droplet growth after entrainment mixing. Atmos. Chem. Phys., 16, 94219433, https://doi.org/10.5194/acp-16-9421-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 348 94 6
PDF Downloads 320 65 1