Abstract
Turbulence and drizzle-rate measurements from a large dataset of marine and continental low stratiform clouds are presented. Turbulence peaks at cloud base over land and near cloud top over the ocean. For both regions, eddy dissipation rate values of 10−5–10−2 m2 s−3 are observed. Surface-based measurements of cloud condensation nuclei number concentration NCCN and liquid water path (LWP) are used to estimate the precipitation susceptibility S0. Results show that positive S0 values are found at low turbulence, consistent with the principle that aerosols suppress precipitation formation, whereas S0 is smaller, and can be negative, in a more turbulent environment. Under similar macrophysical conditions, especially for medium to high LWP, high (low) turbulence is likely to lessen (promote) the suppression effect of high NCCN on precipitation. Overall, the turbulent effect on S0 is stronger in continental than marine stratiform clouds. These observational findings are consistent with recent analytical prediction for a turbulence-broadening effect on cloud droplet size distribution.
© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).