Vertically Sheared Horizontal Flow-Forming Instability in Stratified Turbulence: Analytical Linear Stability Analysis of Statistical State Dynamics Equilibria

Joseph G. Fitzgerald Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts

Search for other papers by Joseph G. Fitzgerald in
Current site
Google Scholar
PubMed
Close
and
Brian F. Farrell Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts

Search for other papers by Brian F. Farrell in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Vertically banded zonal jets are frequently observed in weakly or nonrotating stratified turbulence, with the quasi-biennial oscillation in the equatorial stratosphere and the ocean’s equatorial deep jets being two examples. Explaining the formation of jets in stratified turbulence is a fundamental problem in geophysical fluid dynamics. Statistical state dynamics (SSD) provides powerful methods for analyzing turbulent systems exhibiting emergent organization, such as banded jets. In SSD, dynamical equations are written directly for the evolution of the turbulence statistics, enabling direct analysis of the statistical interactions between the incoherent component of turbulence and the coherent large-scale structure component that underlie jet formation. A second-order closure of SSD, known as S3T, has previously been applied to show that meridionally banded jets emerge in barotropic β-plane turbulence via a statistical instability referred to as the zonostrophic instability. Two-dimensional Boussinesq turbulence provides a simple model of nonrotating stratified turbulence analogous to the β-plane model of planetary turbulence. Jets known as vertically sheared horizontal flows (VSHFs) often emerge in simulations of Boussinesq turbulence, but their dynamics is not yet clearly understood. In this work S3T analysis of the zonostrophic instability is extended to study VSHF emergence in two-dimensional Boussinesq turbulence using an analytical formulation of S3T amenable to perturbation stability analysis. VSHFs are shown to form via an instability that is analogous in stratified turbulence to the zonostrophic instability in β-plane turbulence. This instability is shown to be strikingly similar to the zonostrophic instability, suggesting that jet emergence in both geostrophic and nonrotating stratified turbulence may be understood as instances of the same generic phenomenon.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher's Note: This article was revised on 11 December 2018 to include a reference in the first footnote that was inadvertently omitted when originally published.

Corresponding author: Joseph G. Fitzgerald, jfitzgerald@fas.harvard.edu

Abstract

Vertically banded zonal jets are frequently observed in weakly or nonrotating stratified turbulence, with the quasi-biennial oscillation in the equatorial stratosphere and the ocean’s equatorial deep jets being two examples. Explaining the formation of jets in stratified turbulence is a fundamental problem in geophysical fluid dynamics. Statistical state dynamics (SSD) provides powerful methods for analyzing turbulent systems exhibiting emergent organization, such as banded jets. In SSD, dynamical equations are written directly for the evolution of the turbulence statistics, enabling direct analysis of the statistical interactions between the incoherent component of turbulence and the coherent large-scale structure component that underlie jet formation. A second-order closure of SSD, known as S3T, has previously been applied to show that meridionally banded jets emerge in barotropic β-plane turbulence via a statistical instability referred to as the zonostrophic instability. Two-dimensional Boussinesq turbulence provides a simple model of nonrotating stratified turbulence analogous to the β-plane model of planetary turbulence. Jets known as vertically sheared horizontal flows (VSHFs) often emerge in simulations of Boussinesq turbulence, but their dynamics is not yet clearly understood. In this work S3T analysis of the zonostrophic instability is extended to study VSHF emergence in two-dimensional Boussinesq turbulence using an analytical formulation of S3T amenable to perturbation stability analysis. VSHFs are shown to form via an instability that is analogous in stratified turbulence to the zonostrophic instability in β-plane turbulence. This instability is shown to be strikingly similar to the zonostrophic instability, suggesting that jet emergence in both geostrophic and nonrotating stratified turbulence may be understood as instances of the same generic phenomenon.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher's Note: This article was revised on 11 December 2018 to include a reference in the first footnote that was inadvertently omitted when originally published.

Corresponding author: Joseph G. Fitzgerald, jfitzgerald@fas.harvard.edu
Save
  • Ascani, F., E. Firing, J. P. McCreary, P. Brandt, and R. J. Greatbatch, 2015: The deep equatorial ocean circulation in wind-forced numerical solutions. J. Phys. Oceanogr., 45, 17091734, https://doi.org/10.1175/JPO-D-14-0171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bakas, N. A., and P. J. Ioannou, 2011: Structural stability theory of two-dimensional fluid flow under stochastic forcing. J. Fluid Mech., 682, 332361, https://doi.org/10.1017/jfm.2011.228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bakas, N. A., and P. J. Ioannou, 2013a: Emergence of large scale structure in barotropic β-plane turbulence. Phys. Rev. Lett., 110, 224501, https://doi.org/10.1103/PhysRevLett.110.224501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bakas, N. A., and P. J. Ioannou, 2013b: On the mechanism underlying the spontaneous emergence of barotropic zonal jets. J. Atmos. Sci., 70, 22512271, https://doi.org/10.1175/JAS-D-12-0102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bakas, N. A., and P. J. Ioannou, 2014: A theory for the emergence of coherent structures in beta-plane turbulence. J. Fluid Mech., 740, 312341, https://doi.org/10.1017/jfm.2013.663.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bakas, N. A., N. C. Constantinou, and P. J. Ioannou, 2015: S3T stability of the homogeneous state of barotropic beta-plane turbulence. J. Atmos. Sci., 72, 16891712, https://doi.org/10.1175/JAS-D-14-0213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bakas, N. A., N. C. Constantinou, and P. J. Ioannou, 2018: Statistical state dynamics of weak jets in barotropic beta-plane turbulence. J. Atmos. Sci., https://doi.org/10.1175/JAS-D-18-0148.1, in press.

    • Crossref
    • Export Citation
  • Baldwin, M. P., and Coauthors, 2001: The quasi-biennial oscillation. Rev. Geophys., 39, 179229, https://doi.org/10.1029/1999RG000073.

  • Bernstein, J., and B. F. Farrell, 2010: Low-frequency variability in a turbulent baroclinic jet: Eddy–mean flow interactions in a two-level model. J. Atmos. Sci., 67, 452467, https://doi.org/10.1175/2009JAS3170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brethouwer, G., P. Billant, E. Lindborg, and J. M. Chomaz, 2007: Scaling analysis and simulation of strongly stratified turbulent flows. J. Fluid Mech., 585, 343368, https://doi.org/10.1017/S0022112007006854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Busse, F. H., 1976: A simple model of convection in the Jovian atmosphere. Icarus, 29, 255260, https://doi.org/10.1016/0019-1035(76)90053-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Constantinou, N. C., and J. B. Parker, 2018: Magnetic suppression of zonal flows on a beta plane. Astrophys. J., 863, 46, https://doi.org/10.3847/1538-4357/aace53.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Constantinou, N. C., B. F. Farrell, and P. J. Ioannou, 2014: Emergence and equilibration of jets in beta-plane turbulence: Applications of stochastic structural stability theory. J. Atmos. Sci., 71, 18181842, https://doi.org/10.1175/JAS-D-13-076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Constantinou, N. C., B. F. Farrell, and P. J. Ioannou, 2016: Statistical state dynamics of jet–wave coexistence in barotropic beta-plane turbulence. J. Atmos. Sci., 73, 22292253, https://doi.org/10.1175/JAS-D-15-0288.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DelSole, T., and B. F. Farrell, 1996: Quasi-linear equilibration of a thermally maintained, stochastically excited jet in a quasigeostrophic model. J. Atmos. Sci., 53, 17811797, https://doi.org/10.1175/1520-0469(1996)053<1781:TQLEOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., and P. J. Ioannou, 1993: Stochastic dynamics of baroclinic waves. J. Atmos. Sci., 50, 40444057, https://doi.org/10.1175/1520-0469(1993)050<4044:SDOBW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., and P. J. Ioannou, 2003: Structural stability of turbulent jets. J. Atmos. Sci., 60, 21012118, https://doi.org/10.1175/1520-0469(2003)060<2101:SSOTJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., and P. J. Ioannou, 2007: Structure and spacing of jets in barotropic turbulence. J. Atmos. Sci., 64, 36523665, https://doi.org/10.1175/JAS4016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., and P. J. Ioannou, 2008: Formation of jets by baroclinic turbulence. J. Atmos. Sci., 65, 33533375, https://doi.org/10.1175/2008JAS2611.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., and P. J. Ioannou, 2009a: Emergence of jets from turbulence in the shallow-water equations on an equatorial beta plane. J. Atmos. Sci., 66, 31973207, https://doi.org/10.1175/2009JAS2941.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., and P. J. Ioannou, 2009b: A theory of baroclinic turbulence. J. Atmos. Sci., 66, 24442454, https://doi.org/10.1175/2009JAS2989.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., and P. J. Ioannou, 2009c: A stochastic structural stability theory model of the drift wave-zonal flow system. Phys. Plasmas, 16, 112903, https://doi.org/10.1063/1.3258666.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., and P. J. Ioannou, 2017: Statistical state dynamics based theory for the formation and equilibration of Saturn’s north polar jet. Phys. Rev. Fluids, 2, 073801, https://doi.org/10.1103/PhysRevFluids.2.073801.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., and P. J. Ioannou, 2018: Statistical state dynamics: A new perspective on turbulence in shear flow. Zonal Jets: Phenomenology, Genesis, Physics, B. Galperin and P. L. Read, Eds., Cambridge University Press, 394–413.

  • Fitzgerald, J. G., and B. F. Farrell, 2018: Statistical state dynamics of vertically sheared horizontal flows in two-dimensional stratified turbulence. J. Fluid Mech., 854, 544590, https://doi.org/10.1017/jfm.2018.560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galperin, B., and P. L. Read, Eds., 2018: Zonal Jets: Phenomenology, Genesis, Physics. Cambridge University Press, in press.

    • Crossref
    • Export Citation
  • Herbert, C., R. Marino, D. Rosenberg, and A. Pouquet, 2016: Waves and vortices in the inverse cascade regime of stratified turbulence with or without rotation. J. Fluid Mech., 806, 165204, https://doi.org/10.1017/jfm.2016.581.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herring, J. R., 1963: Investigation of problems in thermal convection. J. Atmos. Sci., 20, 325338, https://doi.org/10.1175/1520-0469(1963)020<0325:IOPITC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and R. S. Lindzen, 1972: An updated theory for the quasi-biennial cycle of the tropical stratosphere. J. Atmos. Sci., 29, 10761080, https://doi.org/10.1175/1520-0469(1972)029<1076:AUTFTQ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hua, B. L., M. D’Orgeville, M. D. Fruman, C. Menesguen, R. Schopp, P. Klein, and H. Sasaki, 2008: Destabilization of mixed Rossby gravity waves and the formation of equatorial zonal jets. J. Fluid Mech., 610, 311341, https://doi.org/10.1017/S0022112008002656.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, H.-P., and W. A. Robinson, 1998: Two-dimensional turbulence and persistent zonal jets in a global barotropic model. J. Atmos. Sci., 55, 611632, https://doi.org/10.1175/1520-0469(1998)055<0611:TDTAPZ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaspi, Y., and Coauthors, 2018: Jupiter’s atmospheric jet streams extend thousands of kilometres deep. Nature, 555, 223226, https://doi.org/10.1038/nature25793.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kong, D., K. Zhang, G. Schubert, and J. D. Anderson, 2018: Origin of Jupiter’s cloud-level zonal winds remains a puzzle even after Juno. Proc. Natl. Acad. Sci. USA, 115, 84998504, https://doi.org/10.1073/pnas.1805927115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A., M. K. Verma, and J. Sukhatme, 2017: Phenomenology of two-dimensional stably stratified turbulence under large-scale forcing. J. Turbul., 18, 219239, https://doi.org/10.1080/14685248.2016.1271123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laval, J. P., J. McWilliams, and B. Dubrulle, 2003: Forced stratified turbulence: Successive transitions with Reynolds number. Phys. Rev., 68E, 036308, https://doi.org/10.1103/PhysRevE.68.036308.

    • Search Google Scholar
    • Export Citation
  • Marino, R., P. D. Mininni, D. L. Rosenberg, and A. Pouquet, 2014: Large-scale anisotropy in stably stratified rotating flows. Phys. Rev., 90E, 023018, https://doi.org/10.1103/PhysRevE.90.023018.

    • Search Google Scholar
    • Export Citation
  • Marston, J. B., 2010: Statistics of the general circulation from cumulant expansions. Chaos, 20, 041107, https://doi.org/10.1063/1.3490719.

  • Marston, J. B., 2012: Planetary atmospheres as nonequilibrium condensed matter. Annu. Rev. Condens. Matter Phys., 3, 285310, https://doi.org/10.1146/annurev-conmatphys-020911-125114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marston, J. B., E. Conover, and T. Schneider, 2008: Statistics of an unstable barotropic jet from a cumulant expansion. J. Atmos. Sci., 65, 19551966, https://doi.org/10.1175/2007JAS2510.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maximenko, N. A., B. Bang, and H. Sasaki, 2005: Observational evidence of alternating zonal jets in the world ocean. Geophys. Res. Lett., 32, L12607, https://doi.org/10.1029/2005GL022728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., 1984: Equatorial beams. J. Mar. Res., 42, 395430, https://doi.org/10.1357/002224084788502792.

  • Muench, J. E., and E. Kunze, 1999: Internal wave interactions with equatorial deep jets. Part I: Momentum-flux divergences. J. Phys. Oceanogr., 29, 14531467, https://doi.org/10.1175/1520-0485(1999)029<1453:IWIWED>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, J. B., and J. A. Krommes, 2013: Zonal flow as pattern formation. Phys. Plasmas, 20, 100703, https://doi.org/10.1063/1.4828717.

  • Parker, J. B., and J. A. Krommes, 2014: Generation of zonal flows through symmetry breaking of statistical homogeneity. New J. Phys., 16, 035006, https://doi.org/10.1088/1367-2630/16/3/035006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 1977: The interaction of two internal waves with the mean flow: Implications for the theory of the quasi-biennial oscillation. J. Atmos. Sci., 34, 18471858, https://doi.org/10.1175/1520-0469(1977)034<1847:TIOTIW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., and A. D. McEwan, 1978: The instability of a forced standing wave in a viscous stratified fluid: A laboratory analogue of the quasi-biennial oscillation. J. Atmos. Sci., 35, 18271839, https://doi.org/10.1175/1520-0469(1978)035<1827:TIOAFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Read, P. L., Y. H. Yamazaki, S. R. Lewis, P. D. Williams, R. Wordsworth, K. Miki-Yamazaki, J. Sommeria, and H. Didelle, 2007: Dynamics of convectively driven banded jets in the laboratory. J. Atmos. Sci., 64, 40314052, https://doi.org/10.1175/2007JAS2219.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., 1975: Waves and turbulence on a beta-plane. J. Fluid Mech., 69, 417443, https://doi.org/10.1017/S0022112075001504.

  • Rorai, C., P. D. Mininni, and A. Pouquet, 2015: Stably stratified turbulence in the presence of large-scale forcing. Phys. Rev., 92E, 013003, https://doi.org/10.1103/PhysRevE.92.013003.

    • Search Google Scholar
    • Export Citation
  • Salmon, R., 1982: Geostrophic turbulence. Topics in Ocean Physics, A. R. Osborne and P. M. Rizzoli, Eds., Italian Physical Society, 30–78.

  • Showman, A. P., P. J. Gierasch, and Y. Lian, 2006: Deep zonal winds can result from shallow driving in a giant-planet atmosphere. Icarus, 182, 513526, https://doi.org/10.1016/j.icarus.2006.01.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, L. M., 2001: Numerical study of two-dimensional stratified turbulence. Advances in Wave Interaction and Turbulence: Proceedings of an AMS-IMS-SIAM Joint Summer Research Conference on Dispersive Wave Turbulence, P. A. Milewski et al., Eds., Amer. Math Soc., 91–105.

    • Crossref
    • Export Citation
  • Smith, L. M., and F. Waleffe, 2002: Generation of slow large scales in forced rotating stratified turbulence. J. Fluid Mech., 451, 145168, https://doi.org/10.1017/S0022112001006309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Squire, J., and A. Bhattacharjee, 2015: Statistical simulation of the magnetorotational dynamo. Phys. Rev. Lett., 114, 085002, https://doi.org/10.1103/PhysRevLett.114.085002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Srinivasan, K., and W. R. Young, 2012: Zonostrophic instability. J. Atmos. Sci., 69, 16331656, https://doi.org/10.1175/JAS-D-11-0200.1.

  • St-Onge, D. A., and J. A. Krommes, 2017: Zonostrophic instability driven by discrete particle noise. Phys. Plasmas, 24, 042107, https://doi.org/10.1063/1.4978786.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, J. R., 2008: Numerical simulations of the stratified oceanic bottom boundary layer. Ph.D. thesis, University of California, San Diego, 212 pp.

  • Tobias, S. M., and J. B. Marston, 2013: Direct statistical simulation of out-of-equilibrium jets. Phys. Rev. Lett., 110, 104502, https://doi.org/10.1103/PhysRevLett.110.104502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tobias, S. M., K. Dagon, and J. B. Marston, 2011: Astrophysical fluid dynamics via direct statistical simulation. Astrophys. J., 727, 127, https://doi.org/10.1088/0004-637X/727/2/127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vasavada, A. R., and A. P. Showman, 2005: Jovian atmospheric dynamics: An update after Galileo and Cassini. Rep. Prog. Phys., 68, 19351996, https://doi.org/10.1088/0034-4885/68/8/R06.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waite, M. L., and P. Bartello, 2004: Stratified turbulence dominated by vortical motion. J. Fluid Mech., 517, 281308, https://doi.org/10.1017/S0022112004000977.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waite, M. L., and P. Bartello, 2006: Stratified turbulence generated by internal gravity waves. J. Fluid Mech., 546, 313339, https://doi.org/10.1017/S0022112005007111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, G. P., 1978: Planetary circulations: 1. Barotropic representation of Jovian and terrestrial turbulence. J. Atmos. Sci., 35, 13991426, https://doi.org/10.1175/1520-0469(1978)035<1399:PCBROJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1977: Response of an equatorial ocean to a periodic monsoon. J. Phys. Oceanogr., 7, 497511, https://doi.org/10.1175/1520-0485(1977)007<0497:ROAEOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Youngs, M. K., and G. C. Johnson, 2015: Basin-wavelength equatorial deep jet signals across three oceans. J. Phys. Oceanogr., 45, 21342148, https://doi.org/10.1175/JPO-D-14-0181.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 390 101 5
PDF Downloads 298 45 2