Aerosol Effects on Clouds and Precipitation over Central Europe in Different Weather Regimes

Christian Barthlott Institute of Meteorology and Climate Research (IMK-TRO), Karlsruhe Institute of Technology, Karlsruhe, Germany

Search for other papers by Christian Barthlott in
Current site
Google Scholar
PubMed
Close
and
Corinna Hoose Institute of Meteorology and Climate Research (IMK-TRO), Karlsruhe Institute of Technology, Karlsruhe, Germany

Search for other papers by Corinna Hoose in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The response of clouds to changes in the aerosol concentration is complex and may differ depending on the cloud type, the aerosol regime, and environmental conditions. In this study, a novel technique is used to systematically modify the environmental conditions in realistic convection-resolving simulations for cases with weak and strong large-scale forcing over central Europe with the Consortium for Small-Scale Modeling (COSMO) model. Besides control runs with quasi-operational settings, initial and boundary temperature profiles are modified with linear increasing temperature increments from 0 to 5 K between 3 and 12 km AGL to represent different amounts of convective available potential energy (CAPE) and relative humidity. The results show a systematic decrease of total precipitation with increasing cloud condensation nuclei (CCN) concentrations for the cases with strong synoptic forcing caused by a suppressed warm-rain process, whereas no systematic aerosol effect is simulated for weak synoptic forcing. The effect of increasing CCN tends to be stronger in the simulations with increased temperatures and lower CAPE. While the large-scale domain-averaged responses to increased CCN are weak, the precipitation forming over mountainous terrain reveals a stronger sensitivity for most of the analyzed cases. Our findings also demonstrate that the role of the warm-rain process is more important for strong than for weak synoptic forcing. The aerosol effect is largest for weakly forced conditions but more predictable for the strongly forced cases. However, more accurate environmental conditions are much more important than accurate aerosol assumptions, especially for weak large-scale forcing.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Christian Barthlott, christian.barthlott@kit.edu

This article is included in the Waves to Weather (W2W) Special Collection.

Abstract

The response of clouds to changes in the aerosol concentration is complex and may differ depending on the cloud type, the aerosol regime, and environmental conditions. In this study, a novel technique is used to systematically modify the environmental conditions in realistic convection-resolving simulations for cases with weak and strong large-scale forcing over central Europe with the Consortium for Small-Scale Modeling (COSMO) model. Besides control runs with quasi-operational settings, initial and boundary temperature profiles are modified with linear increasing temperature increments from 0 to 5 K between 3 and 12 km AGL to represent different amounts of convective available potential energy (CAPE) and relative humidity. The results show a systematic decrease of total precipitation with increasing cloud condensation nuclei (CCN) concentrations for the cases with strong synoptic forcing caused by a suppressed warm-rain process, whereas no systematic aerosol effect is simulated for weak synoptic forcing. The effect of increasing CCN tends to be stronger in the simulations with increased temperatures and lower CAPE. While the large-scale domain-averaged responses to increased CCN are weak, the precipitation forming over mountainous terrain reveals a stronger sensitivity for most of the analyzed cases. Our findings also demonstrate that the role of the warm-rain process is more important for strong than for weak synoptic forcing. The aerosol effect is largest for weakly forced conditions but more predictable for the strongly forced cases. However, more accurate environmental conditions are much more important than accurate aerosol assumptions, especially for weak large-scale forcing.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Christian Barthlott, christian.barthlott@kit.edu

This article is included in the Waves to Weather (W2W) Special Collection.

Save
  • Adams-Selin, R. D., S. C. van den Heever, and R. H. Johnson, 2013: Impact of graupel parameterization schemes on idealized bow echo simulations. Mon. Wea. Rev., 141, 12411262, https://doi.org/10.1175/MWR-D-12-00064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 12271230, https://doi.org/10.1126/science.245.4923.1227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Altaratz, O., I. Koren, T. Reisin, A. Kostinski, G. Feingold, Z. Levin, and Y. Yin, 2008: Aerosols’ influence on the interplay between condensation, evaporation and rain in warm cumulus cloud. Atmos. Chem. Phys., 8, 1524, https://doi.org/10.5194/acp-8-15-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Altaratz, O., I. Koren, L. Remer, and E. Hirsch, 2014: Review: Cloud invigoration by aerosols—Coupling between microphysics and dynamics. Atmos. Res., 140-141, 3860, https://doi.org/10.1016/j.atmosres.2014.01.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldauf, M., A. Seifert, J. Förstner, D. Majewski, and M. Raschendorfer, 2011: Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities. Mon. Wea. Rev., 139, 38873905, https://doi.org/10.1175/MWR-D-10-05013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barthlott, C., and C. Hoose, 2015: Spatial and temporal variability of clouds and precipitation over Germany: Multiscale simulations across the “gray zone.” Atmos. Chem. Phys., 15, 12 36112 384, https://doi.org/10.5194/acp-15-12361-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barthlott, C., B. Mühr, and C. Hoose, 2017: Sensitivity of the 2014 Pentecost storms over Germany to different model grids and microphysics schemes. Quart. J. Roy. Meteor. Soc., 143, 14851503, https://doi.org/10.1002/qj.3019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohard, J.-M., and J.-P. Pinty, 2000: A comprehensive two-moment warm microphysical bulk scheme. I: Description and tests. Quart. J. Roy. Meteor. Soc., 126, 18151842, https://doi.org/10.1256/smsqj.56613.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cui, Z., S. Davies, K. S. Carslaw, and A. M. Blyth, 2011: The response of precipitation to aerosol through riming and melting in deep convective clouds. Atmos. Chem. Phys., 11, 34953510, https://doi.org/10.5194/acp-11-3495-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., II, M. Xue, J. A. Milbrandt, and M. K. Yau, 2010: Comparison of evaporation and cold pool development between single-moment and multimoment bulk microphysics schemes in idealized simulations of tornadic thunderstorms. Mon. Wea. Rev., 138, 11521171, https://doi.org/10.1175/2009MWR2956.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dipankar, A., B. Stevens, R. Heinze, C. Moseley, G. Zängl, M. Giorgetta, and S. Brdar, 2015: Large eddy simulation using the general circulation model ICON. J. Adv. Model. Earth Syst., 7, 963986, https://doi.org/10.1002/2015MS000431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., and Coauthors, 2009: Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds. J. Geophys. Res., 114, d22206, https://doi.org/10.1029/2009JD012352.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., L. R. Leung, D. Rosenfeld, Q. Chen, Z. Li, J. Zhang, and H. Yan, 2013: Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds. Proc. Natl. Acad. Sci. USA, 110, E4581E4590, https://doi.org/10.1073/pnas.1316830110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., Y. Wand, D. Rosenfeld, and X. Liu, 2016: Review of aerosol–cloud interactions: Mechanisms, significance, and challenges. J. Atmos. Sci., 73, 42214252, https://doi.org/10.1175/JAS-D-16-0037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., L. R. Leung, D. Rosenfeld, and P. J. DeMott, 2017: Effects of cloud condensation nuclei and ice nucleating particles on precipitation processes and supercooled liquid in mixed-phase orographic clouds. Atmos. Chem. Phys., 17, 10171035, https://doi.org/10.5194/acp-17-1017-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gayatri, K., S. Patade, and T. V. Prabha, 2017: Aerosol–cloud interaction in deep convective clouds over the Indian peninsula using spectral (bin) microphysics. J. Atmos. Sci., 74, 31453166, https://doi.org/10.1175/JAS-D-17-0034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and H. Morrison, 2017: Modeling condensation in deep convection. J. Atmos. Sci., 74, 22472267, https://doi.org/10.1175/JAS-D-16-0255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grant, L. D., and S. C. van den Heever, 2015: Cold pool and precipitation responses to aerosol loading: Modulation by dry layers. J. Atmos. Sci., 72, 13981408, https://doi.org/10.1175/JAS-D-14-0260.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hande, L. B., C. Engler, C. Hoose, and I. Tegen, 2016: Parameterizing cloud condensation nuclei concentrations during HOPE. Atmos. Chem. Phys., 16, 12 05912 079, https://doi.org/10.5194/acp-16-12059-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heinze, R., and Coauthors, 2017: Large-eddy simulations over Germany using ICON: A comprehensive evaluation. Quart. J. Roy. Meteor. Soc., 143, 69100, https://doi.org/10.1002/qj.2947.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heise, E., B. Ritter, and E. Schrodin, 2006: Operational implementation of the multilayer soil model. Deutscher Wetterdienst Tech. Rep. 9, 19 pp., http://www.cosmo-model.org/content/model/documentation/techReports/docs/techReport09.pdf.

  • Igel, A. L., M. R. Igel, and S. C. van den Heever, 2015: Make it a double? Sobering results from simulations using single-moment microphysics scheme. J. Atmos. Sci., 72, 910925, https://doi.org/10.1175/JAS-D-14-0107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaramillo, A., and O. J. Mesa, 2017: On the relative density of clouds. Quart. J. Roy. Meteor. Soc., 143, 26502653, https://doi.org/10.1002/qj.3099.

  • Kalina, E. A., K. Friedrich, H. Morrison, and G. H. Bryan, 2014: Aerosol effects on idealized supercell thunderstorms in different environments. J. Atmos. Sci., 71, 45584580, https://doi.org/10.1175/JAS-D-14-0037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keil, C., F. Heinlein, and G. C. Craig, 2014: The convective adjustment time-scale as indicator of predictability of convective precipitation. Quart. J. Roy. Meteor. Soc., 140, 480490, https://doi.org/10.1002/qj.2143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A. P., and A. Pokrovsky, 2004: Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. J. Atmos. Sci., 61, 29833001, https://doi.org/10.1175/JAS-3281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A. P., N. BenMoshe, and A. Pokrovsky, 2008: Factors determining the impact of aerosols on surface precipitation from clouds: An attempt at classification. J. Atmos. Sci., 65, 17211748, https://doi.org/10.1175/2007JAS2515.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., B. Adler, N. Kalthoff, C. Barthlott, and S. Serafin, 2018: Moist orographic convection: Physical mechanisms and links to surface-exchange processes. Atmosphere, 9, 80, https://doi.org/10.3390/atmos9030080.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebo, Z. J., and J. H. Seinfeld, 2011: Theoretical basis for convective invigoration due to increased aerosol concentration. Atmos. Chem. Phys., 11, 54075429, https://doi.org/10.5194/acp-11-5407-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebo, Z. J., H. Morrison, and J. H. Seinfeld, 2012: Are simulated aerosol-induced effects on deep convective clouds strongly dependent on saturation adjustment? Atmos. Chem. Phys., 12, 99419964, https://doi.org/10.5194/acp-12-9941-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Macke, A., and Coauthors, 2017: The HD(CP)2 Observational Prototype Experiment HOPE—An overview. Atmos. Chem. Phys., 17, 48874914, https://doi.org/10.5194/acp-17-4887-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • May, P. T., V. N. Bringi, and M. Thurai, 2011: Do we observe aerosol impacts on DSDs in strongly forced tropical thunderstorms? J. Atmos. Sci., 68, 19021910, https://doi.org/10.1175/2011JAS3617.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1974: A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 31, 17911806, https://doi.org/10.1175/1520-0469(1974)031<1791:AHOTCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 30513064, https://doi.org/10.1175/JAS3534.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohr, S., M. Kunz, A. Richter, and B. Ruck, 2017: Statistical characteristics of convective wind gusts in Germany. Nat. Hazards Earth Syst. Sci., 17, 957969, https://doi.org/10.5194/nhess-17-957-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molthan, A. L., and B. A. Colle, 2012: Comparisons of single- and double-moment microphysics schemes in the simulation of a synoptic-scale snowfall event. Mon. Wea. Rev., 140, 29823002, https://doi.org/10.1175/MWR-D-11-00292.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, https://doi.org/10.1175/2008MWR2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neggers, R. A. J., H. J. J. Jonker, and A. P. Siebesma, 2003: Size statistics of cumulus cloud populations in large-eddy simulations. J. Atmos. Sci., 60, 10601074, https://doi.org/10.1175/1520-0469(2003)60<1060:SSOCCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noppel, H., U. Blahak, A. Seifert, and K. D. Beheng, 2010: Simulations of a hailstorm and the impact of CCN using an advanced two-moment cloud microphysical scheme. Atmos. Res., 96, 286301, https://doi.org/10.1016/j.atmosres.2009.09.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ritter, A., and J.-F. Geleyn, 1992: A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon. Wea. Rev., 120, 303325, https://doi.org/10.1175/1520-0493(1992)120<0303:ACRSFN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., U. Lohmann, G. Raga, C. O’Dowd, M. Kulmala, S. Fuzzi, A. Reissell, and M. Andreae, 2008: Flood or drought: How do aerosols affect precipitation? Science, 321, 13091313, https://doi.org/10.1126/science.1160606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., S. R. Herbener, S. C. van den Heever, and T. L’Ecuyer, 2015: Impacts of cloud droplet–nucleating aerosols on shallow tropical convection. J. Atmos. Sci., 72, 13691385, https://doi.org/10.1175/JAS-D-14-0153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schättler, U., G. Doms, and C. Schraff, 2016: A description of the nonhydrostatic regional COSMO-model. Part VII: User’s guide. Deutscher Wetterdienst, 194 pp., http://www.cosmo-model.org/content/model/documentation/core/cosmoUserGuide.pdf.

  • Schneider, L., C. Barthlott, A. I. Barrett, and C. Hoose, 2018: The precipitation response to variable terrain forcing over low mountain ranges in different weather regimes. Quart. J. Roy. Meteor. Soc., 144, 970989, https://doi.org/10.1002/qj.3250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Segal, Y., and A. Khain, 2006: Dependence of droplet concentration on aerosol conditions in different cloud types: Application to droplet concentration parameterization of aerosol conditions. J. Geophys. Res., 111, D15240, https://doi.org/10.1029/2005JD006561.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., and K. D. Beheng, 2006a: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part I: Model description. Meteor. Atmos. Phys., 92, 6782, https://doi.org/10.1007/s00703-005-0113-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seifert, A., and K. D. Beheng, 2006b: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part II: Maritime vs. continental deep convective storms. Meteor. Atmos. Phys., 92, 4566, https://doi.org/10.1007/s00703-005-0112-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seifert, A., C. Köhler, and K. Beheng, 2012: Aerosol-cloud-precipitation effects over Germany as simulated by a convective-scale numerical weather prediction model. Atmos. Chem. Phys., 12, 709725, https://doi.org/10.5194/acp-12-709-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and G. Feingold, 2009: Untangling aerosol effects on clouds and precipitation in a buffered system. Nature, 461, 607613, https://doi.org/10.1038/nature08281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Storer, R. L., and S. C. van den Heever, 2013: Microphysical processes evident in aerosol forcing of tropical deep convective clouds. J. Atmos. Sci., 70, 430446, https://doi.org/10.1175/JAS-D-12-076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Storer, R. L., S. C. van den Heever, and G. L. Stephens, 2010: Modeling aerosol impacts on convective storms in different environments. J. Atmos. Sci., 67, 39043915, https://doi.org/10.1175/2010JAS3363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., X. Li, A. Khain, T. Matsui, S. Lang, and J. Simpson, 2007: Role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations. J. Geophys. Res., 112, D24S18, https://doi.org/10.1029/2007JD008728.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., J.-P. Chen, Z. Li, C. Wang, and C. Zhang, 2012: Impact of aerosols on convective clouds and precipitation. Rev. Geophys., 50, RG2001, https://doi.org/10.1029/2011RG000369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Theunert, F., and A. Seifert, 2006: Simulation studies of shallow convection with the convection-resolving version of DWD Lokal-Modell. COSMO Newsletter, No. 6, DWD, Offenbach am Main, Germany, 121–128, http://www.cosmo-model.org/content/model/documentation/newsLetters/newsLetter06/newsLetter_06.pdf .

  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34, 11491152, https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Heever, S. C., G. L. Stephens, and N. B. Wood, 2011: Aerosol indirect effects on tropical convection characteristics under conditions of radiative–convective equilibrium. J. Atmos. Sci., 68, 699718, https://doi.org/10.1175/2010JAS3603.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, B., E. Gryspeerdt, P. Stier, H. Morrison, G. Thompson, and Z. Kipling, 2017: Uncertainty from the choice of microphysics scheme in convection-permitting models significantly exceeds aerosol effects. Atmos. Chem. Phys., 17, 12 14512 175, https://doi.org/10.5194/acp-17-12145-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and W. C. Skamarock, 2002: Time-splitting methods for elastic models using forward time schemes. Mon. Wea. Rev., 130, 20882097, https://doi.org/10.1175/1520-0493(2002)130<2088:TSMFEM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3640 2583 1107
PDF Downloads 894 94 7