An Adiabatic Mechanism for the Reduction of Jet Meander Amplitude by Potential Vorticity Filamentation

Ben Harvey National Centre for Atmospheric Science, University of Reading, Reading, United Kingdom

Search for other papers by Ben Harvey in
Current site
Google Scholar
PubMed
Close
,
John Methven Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by John Methven in
Current site
Google Scholar
PubMed
Close
, and
Maarten H. P. Ambaum Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Maarten H. P. Ambaum in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The amplitude of ridges in large-amplitude Rossby waves has been shown to decrease systematically with lead time during the first 1–5 days of operational global numerical weather forecasts. These models also exhibit a rapid reduction in the isentropic gradient of potential vorticity (PV) at the tropopause during the first 1–2 days of forecasts. This paper identifies a mechanism linking the reduction in large-scale meander amplitude on jet streams to declining PV gradients. The mechanism proposed is that a smoother isentropic transition of PV across the tropopause leads to excessive PV filamentation on the jet flanks and a more lossy waveguide. The approach taken is to analyze Rossby wave dynamics in a single-layer quasigeostrophic model. Numerical simulations show that the amplitude of a Rossby wave propagating along a narrow but smooth PV front does indeed decay transiently with time. This process is explained in terms of the filamentation of PV from the jet core and associated absorption of wave activity by the critical layers on the jet flanks, and a simple method for quantitatively predicting the magnitude of the amplitude reduction without simulation is presented. Explicitly diffusive simulations are then used to show that the combined impact of diffusion and the adiabatic rearrangement of PV can result in a decay rate of Rossby waves that is 2–4 times as fast as could be expected from diffusion acting alone. This predicted decay rate is sufficient to explain the decay observed in operational weather forecasting models.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ben Harvey, b.j.harvey@reading.ac.uk

Abstract

The amplitude of ridges in large-amplitude Rossby waves has been shown to decrease systematically with lead time during the first 1–5 days of operational global numerical weather forecasts. These models also exhibit a rapid reduction in the isentropic gradient of potential vorticity (PV) at the tropopause during the first 1–2 days of forecasts. This paper identifies a mechanism linking the reduction in large-scale meander amplitude on jet streams to declining PV gradients. The mechanism proposed is that a smoother isentropic transition of PV across the tropopause leads to excessive PV filamentation on the jet flanks and a more lossy waveguide. The approach taken is to analyze Rossby wave dynamics in a single-layer quasigeostrophic model. Numerical simulations show that the amplitude of a Rossby wave propagating along a narrow but smooth PV front does indeed decay transiently with time. This process is explained in terms of the filamentation of PV from the jet core and associated absorption of wave activity by the critical layers on the jet flanks, and a simple method for quantitatively predicting the magnitude of the amplitude reduction without simulation is presented. Explicitly diffusive simulations are then used to show that the combined impact of diffusion and the adiabatic rearrangement of PV can result in a decay rate of Rossby waves that is 2–4 times as fast as could be expected from diffusion acting alone. This predicted decay rate is sufficient to explain the decay observed in operational weather forecasting models.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ben Harvey, b.j.harvey@reading.ac.uk
Save
  • Bühler, O., 2009: Waves and Mean Flows. Cambridge University Press, 370 pp.

    • Crossref
    • Export Citation
  • Chagnon, J. M., S. L. Gray, and J. Methven, 2013: Diabatic processes modifying potential vorticity in a North Atlantic cyclone. Quart. J. Roy. Meteor. Soc., 139, 12701282, https://doi.org/10.1002/qj.2037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dritschel, D. G., 1988: Nonlinear stability bounds for inviscid, two-dimensional, parallel or circular flows with monotonic vorticity, and the analogous three-dimensional quasi-geostrophic flows. J. Fluid Mech., 191, 575581, https://doi.org/10.1017/S0022112088001715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dritschel, D. G., and M. E. McIntyre, 2008: Multiple jets as PV staircases: The Phillips effect and the resilience of eddy-transport barriers. J. Atmos. Sci., 65, 855874, https://doi.org/10.1175/2007JAS2227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Esler, J. G., 2004: Benjamin–Feir instability of Rossby waves on a jet. Quart. J. Roy. Meteor. Soc., 130, 16111630, https://doi.org/10.1256/qj.03.74.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grams, C. M., and H. M. Archambault, 2016: The key role of diabatic outflow in amplifying the midlatitude flow: A representative case study of weather systems surrounding western North Pacific extratropical transition. Mon. Wea. Rev., 144, 38473869, https://doi.org/10.1175/MWR-D-15-0419.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grams, C. M., and Coauthors, 2011: The key role of diabatic processes in modifying the upper-tropospheric wave guide: A North Atlantic case-study. Quart. J. Roy. Meteor. Soc., 137, 21742193, https://doi.org/10.1002/qj.891.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, S. L., C. M. Dunning, J. Methven, G. Masato, and J. M. Chagnon, 2014: Systematic model forecast error in Rossby wave structure. Geophys. Res. Lett., 41, 29792987, https://doi.org/10.1002/2014GL059282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harvey, B. J., 2011: Surface effects in quasi-geostrophic dynamics. Ph.D. thesis, University of Reading, 140 pp.

  • Harvey, B. J., and M. H. P. Ambaum, 2011: Perturbed Rankine vortices in surface quasi-geostrophic dynamics. Geophys. Astrophys. Fluid Dyn., 105, 377391, https://doi.org/10.1080/03091921003694719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harvey, B. J., J. Methven, and M. H. P. Ambaum, 2016: Rossby wave propagation on potential vorticity fronts with finite width. J. Fluid Mech., 794, 775797, https://doi.org/10.1017/jfm.2016.180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., 2003: Critical layers. Encyclopedia of Atmospheric Sciences, Vol. 2, Academic Press, 582–589, https://doi.org/10.1016/B0-12-227090-8/00126-3.

    • Crossref
    • Export Citation
  • Haynes, P. H., and M. E. McIntyre, 1987: On the evolution of vorticity and potential vorticity in the presence of diabatic heating and frictional or other forces. J. Atmos. Sci., 44, 828841, https://doi.org/10.1175/1520-0469(1987)044<0828:OTEOVA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., 1985: Pseudomomentum and the orthogonality of modes in shear flows. J. Atmos. Sci., 42, 22802288, https://doi.org/10.1175/1520-0469(1985)042<2280:PATOOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and P. J. Phillips, 1987: Linear and nonlinear barotropic decay on the sphere. J. Atmos. Sci., 44, 200207, https://doi.org/10.1175/1520-0469(1987)044<0200:LANBDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and I. N. James, 2014: Fluid Dynamics of the Mid-Latitude Atmosphere. Wiley and Sons, 432 pp.

    • Crossref
    • Export Citation
  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, https://doi.org/10.1002/qj.49711147002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., and M. E. McIntyre, 1985: Do Rossby-wave critical layers absorb, reflect, or over-reflect? J. Fluid Mech., 161, 449492, https://doi.org/10.1017/S0022112085003019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madonna, E., H. Wernli, H. Joos, and O. Martius, 2014: Warm conveyor belts in the ERA-Interim dataset (1979–2010). Part I: Climatology and potential vorticity evolution. J. Climate, 27, 326, https://doi.org/10.1175/JCLI-D-12-00720.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martínez-Alvarado, O., E. Madonna, S. L. Gray, and H. Joos, 2016: A route to systematic error in forecasts of Rossby waves. Quart. J. Roy. Meteor. Soc., 142, 196210, https://doi.org/10.1002/qj.2645.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McIntyre, M. E., 1980: Towards a Lagrangian-mean description of stratospheric circulations and chemical transports. Philos. Trans. Roy. Soc. A, 296A, 129148, https://doi.org/10.1098/rsta.1980.0160.

    • Search Google Scholar
    • Export Citation
  • Methven, J., 2003: The influence of PV inversion on polar-vortex dynamics and passive-tracer simulations in atmosphere-like regimes. Quart. J. Roy. Meteor. Soc., 129, 11911215, https://doi.org/10.1256/qj.01.181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, N., 1996: Two-dimensional mixing, edge formation, and permeability diagnosed in an area coordinate. J. Atmos. Sci., 53, 15241537, https://doi.org/10.1175/1520-0469(1996)053<1524:TDMEFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, N., and D. Zhu, 2010: Finite-amplitude wave activity and diffusive flux of potential vorticity in eddy-mean flow interaction. J. Atmos. Sci., 67, 27012716, https://doi.org/10.1175/2010JAS3432.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., and W. R. Young, 1983: How rapidly is a passive scalar mixed within closed streamlines? J. Fluid Mech., 133, 133145, https://doi.org/10.1017/S0022112083001822.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saffin, L., S. L. Gray, J. Methven, and K. D. Williams, 2017: Processes maintaining tropopause sharpness in numerical models. J. Geophys. Res. Atmos., 122, 96119627, https://doi.org/10.1002/2017JD026879.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schäfler, A. G., and Coauthors, 2018: The North Atlantic Waveguide and Downstream Impact Experiment. Bull. Amer. Meteor. Soc., 99, 16071637, https://doi.org/10.1175/BAMS-D-17-0003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swanson, K. L., 2001: Blocking as a local instability to zonally varying flows. Quart. J. Roy. Meteor. Soc., 127, 13411355, https://doi.org/10.1002/qj.49712757412.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 745 pp.

    • Crossref
    • Export Citation
  • Wood, R. B., and M. E. McIntyre, 2010: A general theorem on angular-momentum changes due to potential vorticity mixing and on potential-energy changes due to buoyancy mixing. J. Atmos. Sci., 67, 12611274, https://doi.org/10.1175/2009JAS3293.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 225 78 6
PDF Downloads 228 70 4