The Mechanisms Leading to a Stratospheric Hydration by Overshooting Convection

Thibaut Dauhut Laboratoire d’Aérologie, Université de Toulouse, CNRS, UPS, Toulouse, France

Search for other papers by Thibaut Dauhut in
Current site
Google Scholar
PubMed
Close
,
Jean-Pierre Chaboureau Laboratoire d’Aérologie, Université de Toulouse, CNRS, UPS, Toulouse, France

Search for other papers by Jean-Pierre Chaboureau in
Current site
Google Scholar
PubMed
Close
,
Peter H. Haynes Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom

Search for other papers by Peter H. Haynes in
Current site
Google Scholar
PubMed
Close
, and
Todd P. Lane School of Earth Sciences, and Australian Research Council Centre of Excellence for Climate Extremes, University of Melbourne, Melbourne, Victoria, Australia

Search for other papers by Todd P. Lane in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Overshoots are convective air parcels that rise beyond their level of neutral buoyancy. A giga-large-eddy simulation (100-m cubic resolution) of “Hector the Convector,” a deep convective system that regularly forms in northern Australia, is analyzed to identify overshoots and quantify the effect of hydration of the stratosphere. In the simulation, 1507 individual overshoots were identified, and 46 of them were tracked over more than 10 min. Hydration of the stratosphere occurs through a sequence of mechanisms: overshoot penetration into the stratosphere, followed by entrainment of stratospheric air and then by efficient turbulent mixing between the air in the overshoot and the entrained warmer air, leaving the subsequent mixed air at about the maximum overshooting altitude. The time scale of these mechanisms is about 1 min. Two categories of overshoots are distinguished: those that significantly hydrate the stratosphere and those that have little direct hydration effect. The former reach higher altitudes and hence entrain and mix with air that has higher potential temperatures. The resulting mixed air has higher temperatures and higher saturation mixing ratios. Therefore, a greater amount of the hydrometeors carried by the original overshoot sublimates to form a persistent vapor-enriched layer. This makes the maximum overshooting altitude the key prognostic for the parameterization of deep convection to represent the correct overshoot transport. One common convection parameterization is tested, and the results suggest that the overshoot downward acceleration due to negative buoyancy is too large relative to that predicted by the numerical simulations and needs to be reduced.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Thibaut Dauhut, thibaut.dauhut@aero.obs-mip.fr

Abstract

Overshoots are convective air parcels that rise beyond their level of neutral buoyancy. A giga-large-eddy simulation (100-m cubic resolution) of “Hector the Convector,” a deep convective system that regularly forms in northern Australia, is analyzed to identify overshoots and quantify the effect of hydration of the stratosphere. In the simulation, 1507 individual overshoots were identified, and 46 of them were tracked over more than 10 min. Hydration of the stratosphere occurs through a sequence of mechanisms: overshoot penetration into the stratosphere, followed by entrainment of stratospheric air and then by efficient turbulent mixing between the air in the overshoot and the entrained warmer air, leaving the subsequent mixed air at about the maximum overshooting altitude. The time scale of these mechanisms is about 1 min. Two categories of overshoots are distinguished: those that significantly hydrate the stratosphere and those that have little direct hydration effect. The former reach higher altitudes and hence entrain and mix with air that has higher potential temperatures. The resulting mixed air has higher temperatures and higher saturation mixing ratios. Therefore, a greater amount of the hydrometeors carried by the original overshoot sublimates to form a persistent vapor-enriched layer. This makes the maximum overshooting altitude the key prognostic for the parameterization of deep convection to represent the correct overshoot transport. One common convection parameterization is tested, and the results suggest that the overshoot downward acceleration due to negative buoyancy is too large relative to that predicted by the numerical simulations and needs to be reduced.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Thibaut Dauhut, thibaut.dauhut@aero.obs-mip.fr
Save
  • Adler, R. F., and R. A. Mack, 1986: Thunderstorm cloud top dynamics as inferred from satellite observations and a cloud top parcel model. J. Atmos. Sci., 43, 19451960, https://doi.org/10.1175/1520-0469(1986)043<1945:TCTDAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. G., D. M. Wilmouth, J. B. Smith, and D. S. Sayres, 2012: UV dosage levels in summer: Increased risk of ozone loss from convectively injected water vapor. Science, 337, 835839, https://doi.org/10.1126/science.1222978.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ansong, J. K., P. J. Kyba, and B. R. Sutherland, 2008: Fountains impinging on a density interface. J. Fluid Mech., 595, 115139, https://doi.org/10.1017/S0022112007009093.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ansong, J. K., A. Anderson-Frey, and B. R. Sutherland, 2011: Turbulent fountains in one- and two-layer crossflows. J. Fluid Mech., 689, 254278, https://doi.org/10.1017/jfm.2011.413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Avery, M. A., S. M. Davis, K. H. Rosenlof, H. Ye, and A. E. Dessler, 2017: Large anomalies in lower stratospheric water vapour and ice during the 2015–2016 El Niño. Nat. Geosci., 10, 405409, https://doi.org/10.1038/ngeo2961.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bechtold, P., E. Bazile, F. Guichard, P. Mascart, and E. Richard, 2001: A mass flux convection scheme for regional and global models. Quart. J. Roy. Meteor. Soc., 127, 869886, https://doi.org/10.1002/qj.49712757309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cardoso, S. S. S., and A. W. Woods, 1993: Mixing by a turbulent plume in a confined stratified region. J. Fluid Mech., 250, 277305, https://doi.org/10.1017/S0022112093001466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaboureau, J.-P., J.-P. Cammas, J. Duron, P. J. Mascart, N. M. Sitnikov, and H.-J. Voessing, 2007: A numerical study of tropical cross-tropopause transport by convective overshoots. Atmos. Chem. Phys., 7, 17311740, https://doi.org/10.5194/acp-7-1731-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chemel, C., M. R. Russo, J. A. Pyle, R. S. Sokhi, and C. Schiller, 2009: Quantifying the imprint of a severe Hector thunderstorm during ACTIVE/SCOUT-O3 onto the water content in the upper troposphere/lower stratosphere. Mon. Wea. Rev., 137, 24932514, https://doi.org/10.1175/2008MWR2666.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corti, T., and Coauthors, 2008: Unprecedented evidence for deep convection hydrating the tropical stratosphere. Geophys. Res. Lett., 35, L10810, https://doi.org/10.1029/2008GL033641.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dauhut, T., J.-P. Chaboureau, J. Escobar, and P. Mascart, 2015: Large-eddy simulation of Hector the Convector making the stratosphere wetter. Atmos. Sci. Lett., 16, 135140, https://doi.org/10.1002/asl2.534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dauhut, T., J.-P. Chaboureau, J. Escobar, and P. Mascart, 2016: Giga-LES of Hector the Convector and its two tallest updrafts up to the stratosphere. J. Atmos. Sci., 73, 50415060, https://doi.org/10.1175/JAS-D-16-0083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dauhut, T., J.-P. Chaboureau, P. Mascart, and O. Pauluis, 2017: The atmospheric overturning induced by Hector the Convector. J. Atmos. Sci., 74, 32713284, https://doi.org/10.1175/JAS-D-17-0035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Reus, M., and Coauthors, 2009: Evidence for ice particles in the tropical stratosphere from in-situ measurements. Atmos. Chem. Phys., 9, 67756792, https://doi.org/10.5194/acp-9-6775-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dessler, A., and Coauthors, 2016: Transport of ice into the stratosphere and the humidification of the stratosphere over the 21st century. Geophys. Res. Lett., 43, 23232329, https://doi.org/10.1002/2016GL067991.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frey, W., and Coauthors, 2015: The impact of overshooting deep convection on local transport and mixing in the tropical upper troposphere/lower stratosphere (UTLS). Atmos. Chem. Phys., 15, 64676486, https://doi.org/10.5194/acp-15-6467-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., M. Bonazzola, P. H. Haynes, and T. Peter, 2005: Stratospheric water vapor predicted from the Lagrangian temperature history of air entering the stratosphere in the tropics. J. Geophys. Res., 110, D08107, https://doi.org/10.1029/2004JD005516.

    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., A. E. Dessler, T. J. Dunkerton, I. Folkins, Q. Fu, and P. W. Mote, 2009: Tropical tropopause layer. Rev. Geophys., 47, RG1004, https://doi.org/10.1029/2008RG000267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1989: The Teton–Yellowstone tornado of 21 July 1987. Mon. Wea. Rev., 117, 19131940, https://doi.org/10.1175/1520-0493(1989)117<1913:TTYTOJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and T. L. Clark, 1991: Cloud–environment interface instability: Rising thermal calculations in two spatial dimensions. J. Atmos. Sci., 48, 527546, https://doi.org/10.1175/1520-0469(1991)048<0527:CIIRTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and T. L. Clark, 1993a: Cloud–environment interface instability. Part II: Extension to three spatial dimensions. J. Atmos. Sci., 50, 555573, https://doi.org/10.1175/1520-0469(1993)050<0555:CEIIPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and T. L. Clark, 1993b: Cloud–environment interface instability. Part III: Direct influence of environmental shear. J. Atmos. Sci., 50, 38213828, https://doi.org/10.1175/1520-0469(1993)050<3821:CEIIPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grosvenor, D. P., T. W. Choularton, H. Coe, and G. Held, 2007: A study of the effect of overshooting deep convection on the water content of the TTL and lower stratosphere from cloud resolving model simulations. Atmos. Chem. Phys., 7, 49775002, https://doi.org/10.5194/acp-7-4977-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hardiman, S. C., and Coauthors, 2015: Processes controlling tropical tropopause temperature and stratospheric water vapor in climate models. J. Climate, 28, 65166535, https://doi.org/10.1175/JCLI-D-15-0075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hassim, M. E. E., and T. P. Lane, 2010: A model study on the influence of overshooting convection on TTL water vapour. Atmos. Chem. Phys., 10, 98339849, https://doi.org/10.5194/acp-10-9833-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hassim, M. E. E., T. P. Lane, and P. T. May, 2014: Ground-based observations of overshooting convection during the Tropical Warm Pool-International Cloud Experiment. J. Geophys. Res. Atmos., 119, 880905, https://doi.org/10.1002/2013JD020673.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., and J. D. Neelin, 2007: The convective cold top and quasi equilibrium. J. Atmos. Sci., 64, 14671487, https://doi.org/10.1175/JAS3907.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Homeyer, C. R., 2015: Numerical simulations of extratropical tropopause-penetrating convection: Sensitivities to grid resolution. J. Geophys. Res. Atmos., 120, 71747188, https://doi.org/10.1002/2015JD023356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Homeyer, C. R., J. D. McAuliffe, and K. M. Bedka, 2017: On the development of above-anvil cirrus plumes in extratropical convection. J. Atmos. Sci., 74, 16171633, https://doi.org/10.1175/JAS-D-16-0269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, G., and H. Burridge, 2015: Fountains in industry and nature. Annu. Rev. Fluid Mech., 47, 195220, https://doi.org/10.1146/annurev-fluid-010313-141311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, E., and L. Pfister, 2004: Transport and freeze-drying in the tropical tropopause layer. J. Geophys. Res., 109, D02207, https://doi.org/10.1029/2003JD004022.

    • Search Google Scholar
    • Export Citation
  • Jensen, E., A. S. Ackerman, and J. A. Smith, 2007: Can overshooting convection dehydrate the tropical tropopause layer? J. Geophys. Res., 112, D11209, https://doi.org/10.1029/2006JD007943.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, E., and Coauthors, 2013: Ice nucleation and dehydration in the tropical tropopause layer. Proc. Natl. Acad. Sci. USA, 110, 20412046, https://doi.org/10.1073/pnas.1217104110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khaykin, S., and Coauthors, 2009: Hydration of the lower stratosphere by ice crystal geysers over land convective systems. Atmos. Chem. Phys., 9, 22752287, https://doi.org/10.5194/acp-9-2275-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J., W. J. Randel, and T. Birner, 2018: Convectively driven tropopause-level cooling and its influences on stratospheric moisture. J. Geophys. Res. Atmos., 123, 590606, https://doi.org/10.1002/2017JD027080.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lac, C., and Coauthors, 2018: Overview of the Meso-NH model version 5.4 and its applications. Geosci. Model Dev., 11, 19291969, https://doi.org/10.5194/gmd-11-1929-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lafore, J.-P., and Coauthors, 1998: The Meso-NH atmospheric simulation system. Part I: Adiabatic formulation and control simulations. Ann. Geophys., 16, 90109, https://doi.org/10.1007/s00585-997-0090-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lane, T. P., 2008: The vortical response to penetrative convection and the associated gravity-wave generation. Atmos. Sci. Lett., 9, 103110, https://doi.org/10.1002/asl.167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lane, T. P., and R. D. Sharman, 2006: Gravity wave breaking, secondary wave generation, and mixing above deep convection in a three-dimensional cloud model. Geophys. Res. Lett., 33, L23813, https://doi.org/10.1029/2006GL027988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lane, T. P., M. J. Reeder, and T. L. Clark, 2001: Numerical modeling of gravity wave generation by deep tropical convection. J. Atmos. Sci., 58, 12491274, https://doi.org/10.1175/1520-0469(2001)058<1249:NMOGWG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lane, T. P., R. D. Sharman, T. L. Clark, and H.-M. Hsu, 2003: An investigation of turbulence generation mechanisms above deep convection. J. Atmos. Sci., 60, 12971321, https://doi.org/10.1175/1520-0469(2003)60<1297:AIOTGM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lima Neto, I. E., S. S. S. Cardoso, and A. W. Woods, 2016: On mixing a density interface by a bubble plume. J. Fluid Mech., 802, R3, https://doi.org/10.1017/jfm.2016.454.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and E. J. Zipser, 2005: Global distribution of convection penetrating the tropical tropopause. J. Geophys. Res., 110, D23104, https://doi.org/10.1029/2005JD006063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y. S., S. Fueglistaler, and P. H. Haynes, 2010: Advection-condensation paradigm for stratospheric water vapor. J. Geophys. Res., 115, D24307, https://doi.org/10.1029/2010JD014352.

    • Search Google Scholar
    • Export Citation
  • Munchak, L. A., and L. L. Pan, 2014: Separation of the lapse rate and the cold point tropopauses in the tropics and the resulting impact on cloud top-tropopause relationships. J. Geophys. Res. Atmos., 119, 79637978, https://doi.org/10.1002/2013JD021189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pommereau, J.-P., 2010: Troposphere-to-stratosphere transport in the tropics. C. R. Geosci., 342, 331338, https://doi.org/10.1016/j.crte.2009.10.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and E. J. Jensen, 2013: Physical processes in the tropical tropopause layer and their roles in a changing climate. Nat. Geosci., 6, 169176, https://doi.org/10.1038/ngeo1733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roach, W. T., 1967: On the nature of the summit areas of severe storms in Oklahoma. Quart. J. Roy. Meteor. Soc., 93, 318336, https://doi.org/10.1002/qj.49709339704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and C. Pearl, 2007: 22-year survey of tropical convection penetrating into the lower stratosphere. Geophys. Res. Lett., 34, L04803, https://doi.org/10.1029/2006GL028635.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sayres, D. S., and Coauthors, 2010: Influence of convection on the water isotopic composition of the tropical tropopause layer and tropical stratosphere. J. Geophys. Res., 115, D00J20, https://doi.org/10.1029/2009JD013100.

    • Search Google Scholar
    • Export Citation
  • Schoeberl, M. R., E. J. Jensen, L. Pfister, R. Ueyama, M. Avery, and A. E. Dessler, 2018: Convective hydration of the upper troposphere and lower stratosphere. J. Geophys. Res. Atmos., 123, 45834593, https://doi.org/10.1029/2018JD028286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., J. Chae, P. Minnis, and M. McGill, 2004: Underestimation of deep convective cloud tops by thermal imagery. Geophys. Res. Lett., 31, L11102, https://doi.org/10.1029/2004GL019699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, J. B., and Coauthors, 2017: A case study of convectively sourced water vapor observed in the overworld stratosphere over the United States. J. Geophys. Res. Atmos., 122, 95299554, https://doi.org/10.1002/2017JD026831.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steinwagner, J., S. Fueglistaler, G. Stiller, T. von Clarmann, M. Kiefer, P.-P. Borsboom, A. van Delden, and T. Röckmann, 2010: Tropical dehydration processes constrained by the seasonality of stratospheric deuterated water. Nat. Geosci., 3, 262266, https://doi.org/10.1038/ngeo822.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ueyama, R., E. J. Jensen, and L. Pfister, 2018: Convective influence on the humidity and clouds in the tropical tropopause layer during boreal summer. J. Geophys. Res. Atmos., 123, 75767593, https://doi.org/10.1029/2018JD028674.

    • Search Google Scholar
    • Export Citation
  • Virts, K. S., and R. A. Houze Jr., 2015: Clouds and water vapor in the tropical tropopause transition layer over mesoscale convective systems. J. Atmos. Sci., 72, 47394753, https://doi.org/10.1175/JAS-D-15-0122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, P. K., 2003: Moisture plumes above thunderstorm anvils and their contributions to cross-tropopause transport of water vapor in midlatitudes. J. Geophys. Res., 108, 4194, https://doi.org/10.1029/2002JD002581.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, J. S., R. Fu, S. Fueglistaler, Y. S. Liu, and Y. Zhang, 2011: The influence of summertime convection over Southeast Asia on water vapor in the tropical stratosphere. J. Geophys. Res., 116, D12302, https://doi.org/10.1029/2010JD015416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, D. L., W. G. Read, A. E. Dessler, S. C. Sherwood, and J. H. Jiang, 2005: UARS/MLS cloud ice measurements: Implications for H2O transport near the tropopause. J. Atmos. Sci., 62, 518530, https://doi.org/10.1175/JAS-3382.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1769 1086 300
PDF Downloads 794 141 20