Mesoscale Circulations and Organized Convection in African Easterly Waves

Lorenzo Tomassini Met Office, Exeter, United Kingdom

Search for other papers by Lorenzo Tomassini in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Global convection-permitting model simulations and remote sensing observations are used to investigate the interaction between organized convection, both moist and dry, and the atmospheric circulation in the case of an African easterly wave (AEW). The wave disturbance is associated with a quadrupole structure of divergence, with two convergence centers slightly ahead of the trough. Moisture transport from southeast of the trough to the area in front and lower midtropospheric moisture convergence precondition and organize convection. The main inflow into the squall-line cluster is from behind. The moisture-abundant inflow collides at the low level with monsoon air with high moist static energy and establishes a frontal line of updrafts at the leading edge of the propagating mesoscale convective system. A mantle of moisture surrounds the convective core. A potential vorticity budget analysis reveals that convective latent heating is driving the evolution of the wave but not in a quasi-steady way. The wave propagation includes a succession of convective bursts and subsequent dynamic adjustment processes. Dry convection associated with the Saharan air layer (SAL) and SAL intrusions into the wave trough together with vorticity advection can play a role in intensifying AEWs dynamically as they move from the West African coast across the Atlantic Ocean. Our analysis demonstrates that the synoptic-scale wave and convection are interlinked through mesoscale circulations on a continuum of scales. This implies that the relation between organized convection and the atmospheric circulation is intrinsically dynamic, which poses a particular challenge to subgrid convection parameterizations in numerical models.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lorenzo Tomassini, lorenzo.tomassini@metoffice.gov.uk

Abstract

Global convection-permitting model simulations and remote sensing observations are used to investigate the interaction between organized convection, both moist and dry, and the atmospheric circulation in the case of an African easterly wave (AEW). The wave disturbance is associated with a quadrupole structure of divergence, with two convergence centers slightly ahead of the trough. Moisture transport from southeast of the trough to the area in front and lower midtropospheric moisture convergence precondition and organize convection. The main inflow into the squall-line cluster is from behind. The moisture-abundant inflow collides at the low level with monsoon air with high moist static energy and establishes a frontal line of updrafts at the leading edge of the propagating mesoscale convective system. A mantle of moisture surrounds the convective core. A potential vorticity budget analysis reveals that convective latent heating is driving the evolution of the wave but not in a quasi-steady way. The wave propagation includes a succession of convective bursts and subsequent dynamic adjustment processes. Dry convection associated with the Saharan air layer (SAL) and SAL intrusions into the wave trough together with vorticity advection can play a role in intensifying AEWs dynamically as they move from the West African coast across the Atlantic Ocean. Our analysis demonstrates that the synoptic-scale wave and convection are interlinked through mesoscale circulations on a continuum of scales. This implies that the relation between organized convection and the atmospheric circulation is intrinsically dynamic, which poses a particular challenge to subgrid convection parameterizations in numerical models.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lorenzo Tomassini, lorenzo.tomassini@metoffice.gov.uk
Save
  • Adamson, D. S., S. E. Belcher, B. J. Hoskins, and R. S. Plant, 2006: Boundary-layer friction in midlatitude cyclones. Quart. J. Roy. Meteor. Soc., 132, 101124, https://doi.org/10.1256/qj.04.145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674701, https://doi.org/10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Becker, T., C. S. Bretherton, C. Hohenegger, and B. Stevens, 2018: Estimating bulk entrainment with unaggregated and aggregated convection. Geophys. Res. Lett., 45, 455462, https://doi.org/10.1002/2017GL076640.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berry, G. J., and C. D. Thorncroft, 2005: Case study of an intense African easterly wave. Mon. Wea. Rev., 133, 752766, https://doi.org/10.1175/MWR2884.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berry, G. J., and C. D. Thorncroft, 2012: African easterly wave dynamics in a mesoscale numerical model: The upscale role of convection. J. Atmos. Sci., 69, 12671283, https://doi.org/10.1175/JAS-D-11-099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and P. N. Blossey, 2017: Understanding mesoscale aggregation of shallow cumulus convection using large-eddy simulation. J. Adv. Model. Earth Syst., 9, 27982821, https://doi.org/10.1002/2017MS000981.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burpee, R. W., 1975: Some features of synoptic-scale waves based on a compositing analysis of GATE data. Mon. Wea. Rev., 103, 921925, https://doi.org/10.1175/1520-0493(1975)103<0921:SFOSWB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1963: A note on the large-scale motions in the tropics. J. Atmos. Sci., 20, 607609, https://doi.org/10.1175/1520-0469(1963)020<0607:ANOLSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and A. Eliassen, 1964: On the growth of the hurricane depression. J. Atmos. Sci., 21, 6875, https://doi.org/10.1175/1520-0469(1964)021<0068:OTGOTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies, H. C., 1979: Phase-lagged wave-CISK. Quart. J. Roy. Meteor. Soc., 105, 325353, https://doi.org/10.1002/qj.49710544402.

  • Dunn, G. E., 1940: Cyclogenesis in the tropical Atlantic. Bull. Amer. Meteor. Soc., 21, 215229, https://doi.org/10.1175/1520-0477-21.6.215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., J. D. Neelin, and C. S. Bretherton, 1994: On large-scale circulations in convective atmospheres. Quart. J. Roy. Meteor. Soc., 120, 11111143, https://doi.org/10.1002/qj.49712051902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1998: The formation of tropical cyclones. Meteor. Atmos. Phys., 67, 3769, https://doi.org/10.1007/BF01277501.

  • Guilloteau, C., R. Roca, and M. Gosset, 2016: A multiscale evaluation of the detection capabilities of high-resolution satellite precipitation products in West Africa. J. Hydrometeor., 17, 20412059, https://doi.org/10.1175/JHM-D-15-0148.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanley, K. E., D. J. Kirshbaum, N. M. Roberts, and G. Leoncini, 2013: Sensitivities of a squall line over central Europe in a convective-scale ensemble. Mon. Wea. Rev., 141, 112133, https://doi.org/10.1175/MWR-D-12-00013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., and M. E. McIntyre, 1987: On the evolution of vorticity and potential vorticity in the presence of diabatic heating and frictional and other forces. J. Atmos. Sci., 44, 828841, https://doi.org/10.1175/1520-0469(1987)044<0828:OTEOVA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., 1992: Diabatic sources of potential vorticity in the general circulation. J. Atmos. Sci., 49, 22822292, https://doi.org/10.1175/1520-0469(1992)049<2282:DSOPVI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., and B. Stevens, 2013: Preconditioning deep convection with cumulus congestus. J. Atmos. Sci., 70, 448464, https://doi.org/10.1175/JAS-D-12-089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., and J. D. Neelin, 2007: The convective cold top and quasi equilibrium. J. Atmos. Sci., 64, 14671487, https://doi.org/10.1175/JAS3907.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 1977: Structure and dynamics of a tropical squall-line system. Mon. Wea. Rev., 105, 15401567, https://doi.org/10.1175/1520-0493(1977)105<1540:SADOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., and A. K. Betts, 1981: Convection in GATE. Rev. Geophys., 19, 541576, https://doi.org/10.1029/RG019i004p00541.

  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis: Quasi-global, multiyear, combined-sensor precipitation estimates at fine scale. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janiga, M. A., and C. D. Thorncroft, 2016: The influence of African easterly waves on convection over tropical Africa and the east Atlantic. Mon. Wea. Rev., 144, 171192, https://doi.org/10.1175/MWR-D-14-00419.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenkins, G. S., A. S. Pratt, and A. Heymsfield, 2008: Possible linkages between Saharan dust and tropical cyclone rain band invigoration in the eastern Atlantic during NAMMA-06. Geophys. Res. Lett., 35, L08815, https://doi.org/10.1029/2008GL034072.

    • Search Google Scholar
    • Export Citation
  • Jenkins, G. S., and Coauthors, 2010: Coastal observations of weather features in Senegal during the African Monsoon Multidisciplinary Analysis Special Observing Period 3. J. Geophys. Res., 115, D18108, https://doi.org/10.1029/2009JD013022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C., N. Mahowald, and C. Luo, 2004: Observational evidence of African desert dust intensification of easterly waves. Geophys. Res. Lett., 31, L17208, https://doi.org/10.1029/2004GL020107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karyampudi, V. M., and T. Carlson, 1988: Analysis and numerical simulations of the Saharan Air Layer and its effects on easterly wave disturbances. J. Atmos. Sci., 45, 31023136, https://doi.org/10.1175/1520-0469(1988)045<3102:AANSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karyampudi, V. M., and H. F. Pierce, 2002: Synoptic-scale influence of the Saharan air layer on tropical cyclogenesis over the eastern Atlantic. Mon. Wea. Rev., 130, 31003128, https://doi.org/10.1175/1520-0493(2002)130<3100:SSIOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karyampudi, V. M., and Coauthors, 1999: Validation of the Saharan dust plume conceptual model using lidar, Meteosat, and ECMWF data. Bull. Amer. Meteor. Soc., 80, 10451075, https://doi.org/10.1175/1520-0477(1999)080<1045:VOTSDP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lafore, J.-P., and Coauthors, 2017: A multi-scale analysis of the extreme rain event of Ouagadougou in 2009. Quart. J. Roy. Meteor. Soc., 143, 30943109, https://doi.org/10.1002/qj.3165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, J. M., M. G. Fearon, and H. E. Klieforth, 2012: Herbert Riehl: Intrepid and enigmatic scholar. Bull. Amer. Meteor. Soc., 93, 963985, https://doi.org/10.1175/BAMS-D-11-00224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, N., and I. M. Held, 1989: Nonlinear equilibration of two-dimensional Eady waves. J. Atmos. Sci., 46, 30553064, https://doi.org/10.1175/1520-0469(1989)046<3055:NEOTDE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 312, https://doi.org/10.1175/1520-0493(1987)115<0003:MTCBOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, D. J., and A. J. Thorpe, 1995: Conditional convective heating in a baroclinic atmosphere: A model of convective frontogenesis. J. Atmos. Sci., 52, 16991711, https://doi.org/10.1175/1520-0469(1995)052<1699:CCHIAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfeifroth, U., and J. Trentmann, 2016: Evaluating satellite-based diurnal cycles of precipitation in the African tropics. J. Appl. Meteor. Climatol., 55, 2339, https://doi.org/10.1175/JAMC-D-15-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and M. J. Herman, 2011: Convective quasi-equilibrium reconsidered. J. Adv. Model. Earth Syst., 3, M08003, https://doi.org/10.1029/2011MS000079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., Z. Fuchs, S. Gjorgjievska, and S. Sessions, 2015: Balanced dynamics and convection in the tropical troposphere. J. Adv. Model. Earth Syst., 7, 10931116, https://doi.org/10.1002/2015MS000467.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., D. C. Norquist, and E. E. Recker, 1977: The structure and properties of African wave disturbances as observed during phase III of GATE. Mon. Wea. Rev., 105, 317333, https://doi.org/10.1175/1520-0493(1977)105<0317:TSAPOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riehl, H., 1945: Waves in the easterlies and the polar front in the tropics. University of Chicago Miscellaneous Rep. 17, 79 pp.

  • Riehl, H., Ed., 1954: Tropical Meteorology. Wiley-Blackwell, 392 pp.

  • Ryder, C. L., E. J. Highwood, T. M. Lai, H. Sodemann, and J. H. Marsham, 2013: Impact of atmospheric transport on the evolution of microphysical and optical properties of Saharan dust. Geophys. Res. Lett., 40, 24332438, https://doi.org/10.1002/grl.50482.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schiro, K. A., J. D. Neelin, D. K. Adams, and B. R. Lintner, 2016: Deep convection and column water vapor over tropical land versus tropical ocean: A comparison between the Amazon and the tropical western Pacific. J. Atmos. Sci., 73, 40433064, https://doi.org/10.1175/JAS-D-16-0119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schulz, H., and B. Stevens, 2018: Observing the tropical atmosphere in moisture space. J. Atmos. Sci., 75, 33133330, https://doi.org/10.1175/JAS-D-17-0375.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwendike, J., and S. C. Jones, 2010: Convection in an African Easterly Wave over West Africa and the eastern Atlantic: A model case study of Helene (2006). Quart. J. Roy. Meteor. Soc., 136, 364396, https://doi.org/10.1002/qj.566.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwendike, J., S. C. Jones, B. Vogel, and H. Vogel, 2016: Mineral dust transport toward hurricane Helene (2006). J. Geophys. Res. Atmos., 121, 55385566, https://doi.org/10.1002/2015JD024708.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seitter, K. L., and H.-L. Kuo, 1983: The dynamical structure of squall-line type thunderstorms. J. Atmos. Sci., 40, 28312854, https://doi.org/10.1175/1520-0469(1983)040<2831:TDSOSL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siongco, A. C., C. Hohenegger, and B. Stevens, 2017: Sensitivity of the summertime tropical Atlantic precipitation distribution to convective parameterization and model resolution in ECHAM6. J. Geophys. Res. Atmos., 122, 25792594, https://doi.org/10.1002/2016JD026093.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skinner, C. B., and N. S. Diffenbaugh, 2013: The contribution of African easterly waves to monsoon precipitation in the CMIP3 ensemble. J. Geophys. Res. Atmos., 118, 35903609, https://doi.org/10.1002/jgrd.50363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., 1997: On the theory of CISK. Quart. J. Roy. Meteor. Soc., 123, 407418, https://doi.org/10.1002/qj.49712353808.

  • Thompson, R. M., S. W. Payne, E. E. Recker, and R. J. Reed, 1979: Structure and properties of synoptic-scale wave disturbances in the Intertropical Convergence Zone of the eastern Atlantic. J. Atmos. Sci., 36, 5372, https://doi.org/10.1175/1520-0469(1979)036<0053:SAPOSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomassini, L., D. J. Parker, A. Stirling, C. Bain, C. Senior, and S. Milton, 2017: The interaction between moist diabatic processes and the atmospheric circulation in African Easterly Wave propagation. Quart. J. Roy. Meteor. Soc., 143, 32073227, https://doi.org/10.1002/qj.3173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tory, K. J., M. T. Montgomery, N. E. Davidson, and J. D. Kepert, 2006: Prediction and diagnosis of tropical cyclone formation in an NWP system. Part II: A diagnosis of tropical cyclone Chris formation. J. Atmos. Sci., 63, 30913113, https://doi.org/10.1175/JAS3765.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tory, K. J., J. D. Kepert, J. A. Sippel, and C. M. Nguyen, 2012: On the use of potential vorticity tendency equations for diagnosing atmospheric dynamics in numerical models. J. Atmos. Sci., 69, 942960, https://doi.org/10.1175/JAS-D-10-05005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uccellini, L. W., and P. J. Kocin, 1987: The interaction of jet streak circulations during heavy snow events along the East Coast of the United States. Wea. Forecasting, 2, 289308, https://doi.org/10.1175/1520-0434(1987)002<0289:TIOJSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vizy, E. K., and K. H. Cook, 2018: Mesoscale convective systems and nocturnal rainfall over the West African Sahel: Role of the Inter-tropical front. Climate Dyn., 50, 587614, https://doi.org/10.1007/s00382-017-3628-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walters, D., and Coauthors, 2017: The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations. Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-291.

    • Crossref
    • Export Citation
  • Westphal, D. L., O. B. Toon, and T. N. Carlson, 1988: A case study of mobilization and transport of Saharan dust. J. Atmos. Sci., 45, 21452175, https://doi.org/10.1175/1520-0469(1988)045<2145:ACSOMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, K., and K. A. Emanuel, 1989: Is the tropical atmosphere conditionally unstable? Mon. Wea. Rev., 117, 14711479, https://doi.org/10.1175/1520-0493(1989)117<1471:ITTACU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 624 160 3
PDF Downloads 452 151 3