Convective Cloud Bands Downwind of Mesoscale Mountain Ridges

Daniel J. Kirshbaum Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Daniel J. Kirshbaum in
Current site
Google Scholar
PubMed
Close
and
David M. Schultz Centre for Atmospheric Science, School of Earth and Environmental Sciences, University of Manchester, Manchester, United Kingdom

Search for other papers by David M. Schultz in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Elongated and quasi-stationary cloud bands capable of producing heavy precipitation have recently been observed in the lee of midlatitude mountain ridges. Herein, idealized explicit-convection simulations are used to investigate such bands. A methodical sampling of environmental parameter space reveals that the bands are favored by a multilayer upstream static-stability profile, with a conditionally unstable midlevel layer overlying an absolutely stable surface-based layer. Such profiles promote the formation of leeside hydraulic jumps, with deep upright ascent that initiates elevated moist convection. Over smooth ridges, isolated bands develop past each ridge end due to a local superposition of cross-barrier and along-barrier pressure gradients. This superposition enhances leeside vertical displacements compared to parcels traversing the ridge midsection. In the Northern Hemisphere, the Coriolis force favors the left band over the right band (relative to the incoming flow) due to opposite-signed relative-vorticity perturbations past the two ridge ends. Whereas the negative vorticity anomaly past the left end enhances forcing for ascent, the positive vorticity anomaly past the right end suppresses it. For the environmental flows considered herein, the simulated bands are the most persistent over medium-height (1.5-km high) ridges, which force stronger leeside ascent than taller or shorter ridges. Over more rugged terrain, additional bands form past deep gaps or valleys, again due to a local superposition of horizontal pressure gradients. In contrast to some recent studies of orographic cloud bands, these simulated bands owe their existence to the release of moist static instability, indicating that neither slantwise nor inertial instability is required for their formation.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Daniel J. Kirshbaum, daniel.kirshbaum@mcgill.ca

Abstract

Elongated and quasi-stationary cloud bands capable of producing heavy precipitation have recently been observed in the lee of midlatitude mountain ridges. Herein, idealized explicit-convection simulations are used to investigate such bands. A methodical sampling of environmental parameter space reveals that the bands are favored by a multilayer upstream static-stability profile, with a conditionally unstable midlevel layer overlying an absolutely stable surface-based layer. Such profiles promote the formation of leeside hydraulic jumps, with deep upright ascent that initiates elevated moist convection. Over smooth ridges, isolated bands develop past each ridge end due to a local superposition of cross-barrier and along-barrier pressure gradients. This superposition enhances leeside vertical displacements compared to parcels traversing the ridge midsection. In the Northern Hemisphere, the Coriolis force favors the left band over the right band (relative to the incoming flow) due to opposite-signed relative-vorticity perturbations past the two ridge ends. Whereas the negative vorticity anomaly past the left end enhances forcing for ascent, the positive vorticity anomaly past the right end suppresses it. For the environmental flows considered herein, the simulated bands are the most persistent over medium-height (1.5-km high) ridges, which force stronger leeside ascent than taller or shorter ridges. Over more rugged terrain, additional bands form past deep gaps or valleys, again due to a local superposition of horizontal pressure gradients. In contrast to some recent studies of orographic cloud bands, these simulated bands owe their existence to the release of moist static instability, indicating that neither slantwise nor inertial instability is required for their formation.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Daniel J. Kirshbaum, daniel.kirshbaum@mcgill.ca
Save
  • Andretta, T. A., and D. S. Hazen, 1998: Doppler radar analysis of a Snake River Plain convergence event. Wea. Forecasting, 13, 482491, https://doi.org/10.1175/1520-0434(1998)013<0482:DRAOAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asai, T., 1970: Three-dimensional features of thermal convection in a plane Couette flow. J. Meteor. Soc. Japan, 48, 1829, https://doi.org/10.2151/jmsj1965.48.1_18.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barrett, A. I., S. L. Gray, D. J. Kirshbaum, N. M. Roberts, D. M. Schultz, and J. G. Fairman, 2015: Synoptic versus orographic control on stationary convective banding. Quart. J. Roy. Meteor. Soc., 141, 11011113, https://doi.org/10.1002/qj.2409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 23942416, https://doi.org/10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cosma, S., E. Richard, and F. Miniscloux, 2002: The role of small-scale orographic features in the spatial distribution of precipitation. Quart. J. Roy. Meteor. Soc., 128, 7592, https://doi.org/10.1256/00359000260498798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1986: Another look at downslope windstorms. Part I: The development of analogs to supercritical flow in an infinitely deep, continuously stratified fluid. J. Atmos. Sci., 43, 25272543, https://doi.org/10.1175/1520-0469(1986)043<2527:ALADWP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and J. B. Klemp, 1987: Another look at downslope winds. Part II: Nonlinear amplification beneath wave-overturning layers. J. Atmos. Sci., 44, 34023412, https://doi.org/10.1175/1520-0469(1987)044<3402:ALADWP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galewsky, J., 2008: Orographic clouds in terrain-blocked flows: An idealized modeling study. J. Atmos. Sci., 65, 34603478, https://doi.org/10.1175/2008JAS2435.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holt, M. W., and A. J. Thorpe, 1991: Localized forcing of slantwise motion at fronts. Quart. J. Roy. Meteor. Soc., 117, 943963, https://doi.org/10.1002/qj.49711750104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1972: An Introduction to Dynamic Meteorology. Academic Press, 319 pp.

  • Hong, S.-Y., J. Dudhia, and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Kor. Meteor. Soc., 42, 129151.

    • Search Google Scholar
    • Export Citation
  • Huuskonen, A., E. Saltikoff, and I. Holleman, 2014: The operational weather radar network in Europe. Bull. Amer. Meteor. Soc., 95, 897907, https://doi.org/10.1175/BAMS-D-12-00216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., and D. R. Durran, 2005a: Atmospheric factors governing banded orographic convection. J. Atmos. Sci., 62, 37583774, https://doi.org/10.1175/JAS3568.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., and D. R. Durran, 2005b: Observations and modeling of banded orographic convection. J. Atmos. Sci., 62, 14631479, https://doi.org/10.1175/JAS3417.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., G. H. Bryan, R. Rotunno, and D. R. Durran, 2007a: The triggering of orographic rainbands by small-scale topography. J. Atmos. Sci., 64, 15301549, https://doi.org/10.1175/JAS3924.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., R. Rotunno, and G. H. Bryan, 2007b: The spacing of orographic rainbands triggered by small-scale topography. J. Atmos. Sci., 64, 42224245, https://doi.org/10.1175/2007JAS2335.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., T. M. Merlis, J. R. Gyakum, and R. McTaggart-Cowan, 2018: Sensitivity of idealized moist baroclinic waves to environmental temperature and moisture content. J. Atmos. Sci., 75, 337360, https://doi.org/10.1175/JAS-D-17-0188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mass, C., 1981: Topographically forced convergence in western Washington state. Mon. Wea. Rev., 109, 13351347, https://doi.org/10.1175/1520-0493(1981)109<1335:TFCIWW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miniscloux, F., J. D. Creutin, and S. Anquetin, 2001: Geostatistical analysis of orographic rainbands. J. Appl. Meteor., 40, 18351854, https://doi.org/10.1175/1520-0450(2001)040<1835:GAOOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nastrom, G. D., and K. S. Gage, 1985: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci., 42, 950960, https://doi.org/10.1175/1520-0469(1985)042<0950:ACOAWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., and B. Wyman, 1985: Upstream effects of mesoscale mountains. J. Atmos. Sci., 42, 9771003, https://doi.org/10.1175/1520-0469(1985)042<0977:UEOMM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scheffknecht, P., E. Richard, and D. Lambert, 2016: A highly localized high-precipitation event over Corsica. Quart. J. Roy. Meteor. Soc., 142 (S1), 206221, https://doi.org/10.1002/qj.2795.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., and P. N. Schumacher, 1999: The use and misuse of conditional symmetric instability. Mon. Wea. Rev., 127, 27092732, https://doi.org/10.1175/1520-0493(1999)127<2709:TUAMOC>2.0.CO;2; Corrigendum, 128, 1573.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., and J. A. Knox, 2007: Banded convection caused by frontogenesis in a conditionally, symmetrically, and inertially unstable environment. Mon. Wea. Rev., 135, 20952110, https://doi.org/10.1175/MWR3400.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., D. M. Schultz, and J. A. Knox, 2010: Convective snowbands downstream of the Rocky Mountains in an environment with conditional, dry symmetric, and inertial instabilities. Mon. Wea. Rev., 138, 44164438, https://doi.org/10.1175/2010MWR3334.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., D. M. Schultz, and J. A. Knox, 2015: Influence of terrain resolution on banded convection in the lee of the Rocky Mountains. Mon. Wea. Rev., 143, 13991416, https://doi.org/10.1175/MWR-D-14-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siedersleben, S. K., and A. Gohm, 2016: The missing link between terrain-induced potential vorticity banners and banded convection. Mon. Wea. Rev., 144, 40634080, https://doi.org/10.1175/MWR-D-16-0042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 125 pp.

  • Smith, R. B., 1989: Hydrostatic flow over mountains. Advances in Geophysics, Vol. 31, Academic Press, 1–41, https://doi.org/10.1016/S0065-2687(08)60052-7.

    • Crossref
    • Export Citation
  • Smith, R. B., A. C. Gleason, P. A. Gluhosky, and V. Grubiŝić, 1997: The wake of St. Vincent. J. Atmos. Sci., 54, 606623, https://doi.org/10.1175/1520-0469(1997)054<0606:TWOSV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., R. M. Rasmussen, and T. L. Clark, 1988: On the dynamics of Hawaiian cloud bands: Island forcing. J. Atmos. Sci., 45, 18721905, https://doi.org/10.1175/1520-0469(1988)045<1872:OTDOHC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, C. F., D. M. Schultz, and G. Vaughan, 2018: A global climatology of tropospheric inertial instability. J. Atmos. Sci., 75, 805825, https://doi.org/10.1175/JAS-D-17-0062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 652 285 107
PDF Downloads 394 113 11