Dispersion Characteristics and Circulation Associated with Boreal Summer Westward-Traveling Mixed Rossby–Gravity Wave–Like Disturbances

Andie Y. M. Au-Yeung Earth System Science Programme, Chinese University of Hong Kong, and School of Energy and Environment, City University of Hong Kong, Hong Kong, China

Search for other papers by Andie Y. M. Au-Yeung in
Current site
Google Scholar
PubMed
Close
and
Chi-Yung Tam Earth System Science Programme, Chinese University of Hong Kong, Hong Kong, China

Search for other papers by Chi-Yung Tam in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An algorithm has been developed to track synoptic-scale, westward-traveling mixed Rossby–gravity (MRG) wave–like disturbances with a cross-equatorial component. Applied to space–time-filtered meridional wind data, this algorithm finds locations with Gaussian-shaped wind structures stated in the solutions of shallow-water equations (SWEs). Based on 850-hPa meridional wind from the global National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) dataset, local and instantaneous wave properties including the occurrence time, wavenumber, intrinsic frequency, and magnitude were examined. It was found that these low-level MRG wave–like disturbances can be classified into a longer-wavelength group and a shorter-wavelength group. While most waves identified in the eastern Pacific give longer wavelengths, disturbances in the western Pacific tend to have a wider range of wavenumbers. Composite analysis revealed that east of ~140°E, low-level disturbances are characterized by cross-equatorial wind anomalies with alternating signs, thus consistent with the MRG wave solution. West of ~140°E, they appear as northeast–southwest-tilted eddies that propagate northwestward. Examination of their energetics suggests that such a tilting structure is favorable to the maintenance of these transients because of the meridional shear of background zonal wind west of ~140°E in the off-equatorial Pacific. Farther east, the confluent nature of the low-level background flow plays a dominant role in maintaining the MRG wave–like disturbances because of barotropic conversion. Finally, there is evidence of downward energy dispersion in the mid- to upper levels, suggesting that the upper-level wave activity might be important in triggering these low-level waves in the Pacific basin.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Chi-Yung Francis Tam, francis.tam@cuhk.edu.hk

Abstract

An algorithm has been developed to track synoptic-scale, westward-traveling mixed Rossby–gravity (MRG) wave–like disturbances with a cross-equatorial component. Applied to space–time-filtered meridional wind data, this algorithm finds locations with Gaussian-shaped wind structures stated in the solutions of shallow-water equations (SWEs). Based on 850-hPa meridional wind from the global National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) dataset, local and instantaneous wave properties including the occurrence time, wavenumber, intrinsic frequency, and magnitude were examined. It was found that these low-level MRG wave–like disturbances can be classified into a longer-wavelength group and a shorter-wavelength group. While most waves identified in the eastern Pacific give longer wavelengths, disturbances in the western Pacific tend to have a wider range of wavenumbers. Composite analysis revealed that east of ~140°E, low-level disturbances are characterized by cross-equatorial wind anomalies with alternating signs, thus consistent with the MRG wave solution. West of ~140°E, they appear as northeast–southwest-tilted eddies that propagate northwestward. Examination of their energetics suggests that such a tilting structure is favorable to the maintenance of these transients because of the meridional shear of background zonal wind west of ~140°E in the off-equatorial Pacific. Farther east, the confluent nature of the low-level background flow plays a dominant role in maintaining the MRG wave–like disturbances because of barotropic conversion. Finally, there is evidence of downward energy dispersion in the mid- to upper levels, suggesting that the upper-level wave activity might be important in triggering these low-level waves in the Pacific basin.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Chi-Yung Francis Tam, francis.tam@cuhk.edu.hk
Save
  • Chang, C.-P., V. F. Morris, and J. M. Wallace, 1970: A statistical study of easterly waves in the western Pacific: July–December 1964. J. Atmos. Sci., 27, 195201, https://doi.org/10.1175/1520-0469(1970)027<0195:ASSOEW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., and R. Huang, 2009: Interannual variations in mixed Rossby–gravity waves and their impacts on tropical cyclogenesis over the western North Pacific. J. Climate, 22, 535549, https://doi.org/10.1175/2008JCLI2221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., Y. N. Takayabu, and C. Yokoyama, 2014: Synoptic-scale dual structure of precipitable water along the eastern Pacific ITCZ. J. Climate, 27, 62886304, https://doi.org/10.1175/JCLI-D-14-00060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ching, L., C.-H. Sui, and M.-J. Yang, 2010: An analysis of the multiscale nature of tropical cyclone activities in June 2004: Climate background. J. Geophys. Res., 115, D24108, https://doi.org/10.1029/2010JD013803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dias, J., and G. N. Kiladis, 2014: Influence of the basic state zonal flow on convectively coupled equatorial waves. Geophys. Res. Lett., 41, 69046913, https://doi.org/10.1002/2014GL061476.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dias, J., S. Leroux, S. N. Tulich, and G. N. Kiladis, 2013: How systematic is organized tropical convection within the MJO? Geophys. Res. Lett., 40, 14201425, https://doi.org/10.1002/grl.50308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickinson, M., and J. Molinari, 2002: Mixed Rossby–gravity waves and western Pacific tropical cyclogenesis. Part I: Synoptic evolution. J. Atmos. Sci., 59, 21832196, https://doi.org/10.1175/1520-0469(2002)059<2183:MRGWAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Done, J. M., G. J. Holland, and P. J. Webster, 2011: The role of wave energy accumulation in tropical cyclogenesis over the tropical North Atlantic. Climate Dyn., 36, 753767, https://doi.org/10.1007/s00382-010-0880-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., and M. P. Baldwin, 1995: Observation of 3–6-day meridional wind oscillations over the tropical Pacific, 1973–1992: Horizontal structure and propagation. J. Atmos. Sci., 52, 15851601, https://doi.org/10.1175/1520-0469(1995)052<1585:OODMWO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and P. E. Roundy, 2006: The role of tropical waves in tropical cyclogenesis. Mon. Wea. Rev., 134, 23972417, https://doi.org/10.1175/MWR3204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gehne, M., and R. Kleeman, 2012: Spectral analysis of tropical atmospheric dynamical variables using a linear shallow-water modal decomposition. J. Atmos. Sci., 69, 23002316, https://doi.org/10.1175/JAS-D-10-05008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere-Ocean Dynamics. Academic Press, 662 pp.

  • Gu, G., and C. Zhang, 2001: A spectrum analysis of synoptic-scale disturbances in the ITCZ. J. Climate, 14, 27252739, https://doi.org/10.1175/1520-0442(2001)014<2725:ASAOSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ha, Y., Z. Zhong, Y. Zhu, and Y. Hu, 2013: Contributions of barotropic energy conversion to northwest Pacific tropical cyclone activity during ENSO. Mon. Wea. Rev., 141, 13371346, https://doi.org/10.1175/MWR-D-12-00084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and B. Liebmann, 1991: The structure and annual variation of antisymmetric fluctuations of tropical convection and their association with Rossby–gravity waves. J. Atmos. Sci., 48, 21272140, https://doi.org/10.1175/1520-0469(1991)048<2127:TSAAVO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and M. C. Wheeler, 2008: Some space–time spectral analyses of tropical convection and planetary-scale waves. J. Atmos. Sci., 65, 29362948, https://doi.org/10.1175/2008JAS2675.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and G. J. Hakim, 2013: An Introduction to Dynamic Meteorology. International Geophysics Series, Vol. 88, Academic Press, 532 pp.

    • Crossref
    • Export Citation
  • Hsu, P.-C., and T. Li, 2011: Interactions between boreal summer intraseasonal oscillations and synoptic-scale disturbances over the western North Pacific. Part II: Apparent heat and moisture sources and eddy momentum transport. J. Climate, 24, 942961, https://doi.org/10.1175/2010JCLI3834.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., 2014: An introduction to combined Fourier–wavelet transform and its application to convectively coupled equatorial waves. Climate Dyn., 43, 13391356, https://doi.org/10.1007/s00382-013-1949-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., 1998: Observations of Rossby waves linked to convection over the eastern tropical Pacific. J. Atmos. Sci., 55, 321339, https://doi.org/10.1175/1520-0469(1998)055<0321:OORWLT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, https://doi.org/10.1029/2008RG000266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., J. Dias, and M. Gehne, 2016: The relationship between equatorial mixed Rossby–gravity and eastward inertio-gravity waves. Part I. J. Atmos. Sci., 73, 21232145, https://doi.org/10.1175/JAS-D-15-0230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, H.-C., J.-H. Chen, R. T. Williams, and C.-P. Chang, 2001: Rossby waves in zonally opposing mean flow: Behavior in northwest Pacific summer monsoon. J. Atmos. Sci., 58, 10351050, https://doi.org/10.1175/1520-0469(2001)058<1035:RWIZOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K. H., and N. C. Lau, 1990: Observed structure and propagation characteristics of tropical summertime synoptic scale disturbances. Mon. Wea. Rev., 118, 18881913, https://doi.org/10.1175/1520-0493(1990)118<1888:OSAPCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K. H., and N. C. Lau, 1992: The energetics and propagation dynamics of tropical summertime synoptic-scale disturbances. Mon. Wea. Rev., 120, 25232539, https://doi.org/10.1175/1520-0493(1992)120<2523:TEAPDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and H. H. Hendon, 1990: Synoptic-scale disturbances near the equator. J. Atmos. Sci., 47, 14631479, https://doi.org/10.1175/1520-0469(1990)047<1463:SSDNTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magaña, V., and M. Yanai, 1995: Mixed Rossby–gravity waves triggered by lateral forcing. J. Atmos. Sci., 52, 14731486, https://doi.org/10.1175/1520-0469(1995)052<1473:MRWTBL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mak, M.-K., 1969: Laterally driven stochastic motions in the tropics. J. Atmos. Sci., 26, 4164, https://doi.org/10.1175/1520-0469(1969)026<0041:LDSMIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 2001: The Madden–Julian oscillation, barotropic dynamics, and North Pacific tropical cyclone formation. Part I: Observations. J. Atmos. Sci., 58, 25452558, https://doi.org/10.1175/1520-0469(2001)058<2545:TMJOBD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and M. J. Dickinson, 2003: The intraseasonal oscillation and the energetics of summertime tropical western North Pacific synoptic-scale disturbances. J. Atmos. Sci., 60, 21532168, https://doi.org/10.1175/1520-0469(2003)060<2153:TIOATE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543, https://doi.org/10.2151/jmsj1965.44.1_25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1970: On the role of transient eddies in the tropical troposphere. J. Meteor. Soc. Japan, 48, 348359, https://doi.org/10.2151/jmsj1965.48.4_348.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nitta, T., and Y. Takayabu, 1985: Global analysis of the lower tropospheric disturbances in the tropics during the northern summer of the FGGE year. Part II: Regional characteristics of the disturbances. Pure Appl. Geophys., 123, 272292, https://doi.org/10.1007/BF00877023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pires, P., J.-L. Redelsperger, and J.-P. Lafore, 1997: Equatorial atmospheric waves and their association to convection. Mon. Wea. Rev., 125, 11671184, https://doi.org/10.1175/1520-0493(1997)125<1167:EAWATA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., and G. J. Holland, 1999: Large-scale patterns associated with tropical cyclogenesis in the western Pacific. Mon. Wea. Rev., 127, 20272043, https://doi.org/10.1175/1520-0493(1999)127<2027:LSPAWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., and W. M. Frank, 2004: A climatology of waves in the equatorial region. J. Atmos. Sci., 61, 21052132, https://doi.org/10.1175/1520-0469(2004)061<2105:ACOWIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salby, M. L., 1981: The 2-day wave in the middle atmosphere: Observations and theory. J. Geophys. Res., 86, 96549660, https://doi.org/10.1029/JC086iC10p09654.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and C. S. Bretherton, 1999: Development of synoptic-scale disturbances over the summertime tropical northwest Pacific. J. Atmos. Sci., 56, 31063127, https://doi.org/10.1175/1520-0469(1999)056<3106:DOSSDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., 1994a: Large-scale cloud disturbances associated with equatorial waves. Part I: Spectral features of the cloud disturbances. J. Meteor. Soc. Japan, 72, 433448, https://doi.org/10.2151/jmsj1965.72.3_433.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., 1994b: Large-scale cloud disturbances associated with equatorial waves. Part II: Westward-propagating inertio-gravity waves. J. Meteor. Soc. Japan, 72, 451465, https://doi.org/10.2151/jmsj1965.72.3_451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., and T. Nitta, 1993: 3-5 day-period disturbances coupled with convection over the tropical Pacific Ocean. J. Meteor. Soc. Japan, 71, 221246, https://doi.org/10.2151/jmsj1965.71.2_221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tam, C. Y., and T. Li, 2006: The origin and dispersion characteristics of the observed tropical summertime synoptic-scale waves over the western Pacific. Mon. Wea. Rev., 134, 16301646, https://doi.org/10.1175/MWR3147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79, 6178, https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., 1971: Spectral studies of tropospheric wave disturbances in the tropical western Pacific. Rev. Geophys. Space Phys., 9, 557612, https://doi.org/10.1029/RG009i003p00557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and X. Xie, 1996: Low-frequency equatorial waves in vertically shear flow. Part I: Stable waves. J. Atmos. Sci., 53, 449467, https://doi.org/10.1175/1520-0469(1996)053<0449:LFEWIV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, https://doi.org/10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M., G. N. Kiladis, and P. J. Webster, 2000: Large-scale dynamical fields associated with convectively coupled equatorial waves. J. Atmos. Sci., 57, 613640, https://doi.org/10.1175/1520-0469(2000)057<0613:LSDFAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, X., and B. Wang, 1996: Low-frequency equatorial waves in vertically sheared zonal flows. Part II: Unstable waves. J. Atmos. Sci., 53, 35893605, https://doi.org/10.1175/1520-0469(1996)053<3589:LFEWIV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanai, M., and T. Maruyama, 1966: Stratospheric wave disturbances propagating over the equatorial Pacific. J. Meteor. Soc. Japan, 44, 291294, https://doi.org/10.2151/jmsj1965.44.5_291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, G. Y., B. Hoskins, and J. Slingo, 2003: Convectively coupled equatorial waves: A new methodology for identifying wave structures in observational data. J. Atmos. Sci., 60, 16371654, https://doi.org/10.1175/1520-0469(2003)060<1637:CCEWAN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, G. Y., B. Hoskins, and J. Slingo, 2007a: Convectively coupled equatorial waves: Part I: Horizontal and vertical structures. J. Atmos. Sci., 64, 34383451, https://doi.org/10.1175/JAS4019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, G. Y., B. Hoskins, and J. Slingo, 2007b: Convectively coupled equatorial waves. Part II: Propagation characteristics. J. Atmos. Sci., 64, 34243437, https://doi.org/10.1175/JAS4018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, G. Y., B. Hoskins, and J. Slingo, 2007c: Convectively coupled equatorial waves. Part III: Synthesis structures and their forcing and evolution. J. Atmos. Sci., 64, 34383451, https://doi.org/10.1175/JAS4019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zehr, R. M., 1992: Tropical cyclogenesis in the western North Pacific. NOAA Tech. Rep. NESDIS 61, 181 pp.

  • Zhou, X. Q., and B. Wang, 2007: Transition from an eastern Pacific upper-level mixed Rossby-gravity wave to a western Pacific tropical cyclone. Geophys. Res. Lett., 34, L24801, https://doi.org/10.1029/2007GL031831.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 268 114 13
PDF Downloads 209 89 7