A Scale-Adaptive Turbulent Kinetic Energy Closure for the Dry Convective Boundary Layer

Marcin J. Kurowski Jet Propulsion Laboratory, California Institute of Technology, Pasadena, and Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, Los Angeles, California

Search for other papers by Marcin J. Kurowski in
Current site
Google Scholar
PubMed
Close
and
João Teixeira Jet Propulsion Laboratory, California Institute of Technology, Pasadena, and Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, Los Angeles, California

Search for other papers by João Teixeira in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A pragmatic scale-adaptive turbulent kinetic energy (TKE) closure is proposed to simulate the dry convective boundary layer for a variety of horizontal grid resolutions: from 50 m, typical of large-eddy simulation models that use three-dimensional turbulence parameterizations/closures, up to 100 km, typical of climate models that use one-dimensional turbulence and convection parameterizations/closures. Since parameterizations/closures using the TKE approach have been frequently used in these two asymptotic limits, a simple method is proposed to merge them with a mixing-length-scale formulation for intermediate resolutions. This new scale-adaptive mixing length naturally increases with increasing grid length until it saturates as the grid length reaches mesoscale-model resolution. The results obtained using this new approach for dry convective boundary layers are promising. The mean vertical profiles of potential temperature and heat flux remain in good agreement for different resolutions. A continuous transition (in terms of resolution) across the gray zone is illustrated through the partitioning between the model-resolved and the subgrid-scale transports as well as by documenting the transition of the subgrid-scale TKE source/sink terms. In summary, a natural and continuous transition across resolutions (from 50 m to 100 km) is obtained, for dry convection, using exactly the same atmospheric model for all resolutions with a simple scale-adaptive mixing-length formulation.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Marcin J. Kurowski, marcin.j.kurowski@jpl.nasa.gov

Abstract

A pragmatic scale-adaptive turbulent kinetic energy (TKE) closure is proposed to simulate the dry convective boundary layer for a variety of horizontal grid resolutions: from 50 m, typical of large-eddy simulation models that use three-dimensional turbulence parameterizations/closures, up to 100 km, typical of climate models that use one-dimensional turbulence and convection parameterizations/closures. Since parameterizations/closures using the TKE approach have been frequently used in these two asymptotic limits, a simple method is proposed to merge them with a mixing-length-scale formulation for intermediate resolutions. This new scale-adaptive mixing length naturally increases with increasing grid length until it saturates as the grid length reaches mesoscale-model resolution. The results obtained using this new approach for dry convective boundary layers are promising. The mean vertical profiles of potential temperature and heat flux remain in good agreement for different resolutions. A continuous transition (in terms of resolution) across the gray zone is illustrated through the partitioning between the model-resolved and the subgrid-scale transports as well as by documenting the transition of the subgrid-scale TKE source/sink terms. In summary, a natural and continuous transition across resolutions (from 50 m to 100 km) is obtained, for dry convection, using exactly the same atmospheric model for all resolutions with a simple scale-adaptive mixing-length formulation.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Marcin J. Kurowski, marcin.j.kurowski@jpl.nasa.gov
Save
  • Bhattacharya, R., and B. Stevens, 2016: A two turbulence kinetic energy model as a scale-adaptive approach to modeling the planetary boundary layer. J. Adv. Model. Earth Syst., 8, 224243, https://doi.org/10.1002/2015MS000548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1962: The vertical distribution of wind and turbulent exchange in a neutral atmosphere. J. Phys. Res., 67, 30953102, https://doi.org/10.1029/JZ067i008p03095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bogenschutz, P. A., and S. K. Krueger, 2013: A simplified PDF parameterization of subgrid-scale clouds and turbulence for cloud-resolving models. J. Adv. Model. Earth Syst., 5, 195211, https://doi.org/10.1002/jame.20018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boutle, I. A., J. E. J. Eyre, and A. P. Lock, 2014: Seamless stratocumulus simulation across the turbulent gray zone. Mon. Wea. Rev., 142, 16551668, https://doi.org/10.1175/MWR-D-13-00229.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheinet, S., and J. Teixeira, 2003: A simple formulation for the eddy-diffusivity parameterization of cloud-topped boundary layers. Geophys. Res. Lett., 30, 1930, https://doi.org/10.1029/2003GL017377.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, A., K.-M. Xu, and B. Stevens, 2010: Effects of resolution on the simulation of boundary-layer clouds and the partition of kinetic energy to subgrid scales. J. Adv. Model. Earth Syst., 2 (1), https://doi.org/10.3894/JAMES.2010.2.3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layer derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527, https://doi.org/10.1007/BF00119502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorrestijn, J., D. T. Crommelin, A. P. Siebesma, and H. J. J. Jonker, 2013: Stochastic parameterization of shallow cumulus convection estimated from high-resolution model data. Theor. Comput. Fluid Dyn., 27, 133148, https://doi.org/10.1007/s00162-012-0281-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Efstathiou, G. A., and R. J. Beare, 2015: Quantifying and improving sub-grid diffusion in the boundary-layer grey zone. Quart. J. Roy. Meteor. Soc., 141, 30063017, https://doi.org/10.1002/qj.2585.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., and Coauthors, 2015: Improving representation of convective transport for scale-aware parameterization: 1. Convection and cloud properties simulated with spectral bin and bulk microphysics. J. Geophys. Res. Atmos., 120, 34853509, https://doi.org/10.1002/2014JD022142.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grenier, H., and C. S. Bretherton, 2001: A moist PBL parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Mon. Wea. Rev., 129, 357377, https://doi.org/10.1175/1520-0493(2001)129<0357:AMPPFL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., and Coauthors, 2014: Understanding and representing atmospheric convection across scales: Recommendations from the meeting held at Dartington Hall, Devon, UK, 28–30 January 2013. Atmos. Sci. Lett., 15, 348353, https://doi.org/10.1002/asl2.508.

    • Search Google Scholar
    • Export Citation
  • Honnert, R., 2016: Representation of the grey zone of turbulence in the atmospheric boundary layer. Adv. Sci. Res., 13, 6367, https://doi.org/10.5194/asr-13-63-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Honnert, R., V. Masson, and F. Couvreux, 2011: A diagnostic for evaluating the representation of turbulence in atmospheric models at the kilometric scale. J. Atmos. Sci., 68, 31123131, https://doi.org/10.1175/JAS-D-11-061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ito, J., H. Niino, M. Nakanishi, and C.-H. Moeng, 2015: An extension of the Mellor–Yamada model to the terra incognita zone for dry convective mixed layers in the free convection regime. Bound.-Layer Meteor., 157, 2343, https://doi.org/10.1007/s10546-015-0045-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kitamura, K., 2016: Improving a turbulence scheme for the terra incognita in a dry convective boundary layer. J. Meteor. Soc. Japan, 94, 491506, https://doi.org/10.2151/jmsj.2016-028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 10701096, https://doi.org/10.1175/1520-0469(1978)035<1070:TSOTDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., M. Tewari, F. Chen, and J. Dudhia, 2013: Objectively determined fair-weather CBL depths in the ARW-WRF model and their comparison to CASES-97 observations. Mon. Wea. Rev., 141, 3054, https://doi.org/10.1175/MWR-D-12-00106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1974: A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 31, 17911806, https://doi.org/10.1175/1520-0469(1974)031<1791:AHOTCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., and J. C. Wyngaard, 1988: Spectral analysis of large-eddy simulations of the convective boundary layer. J. Atmos. Sci., 45, 35743587, https://doi.org/10.1175/1520-0469(1988)045<3573:SAOLES>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. M. F. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib. Geophys. Inst. Acad. Sci. USSR, 151, 163187.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., 2001: Improvement of the Mellor–Yamada turbulence closure model based on large-eddy simulation data. Bound.-Layer Meteor., 99, 349378, https://doi.org/10.1023/A:1018915827400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, H., and U. Schumann, 1989: Coherent structures of the convective boundary layer derived from large-eddy simulation. J. Fluid Mech., 200, 511562, https://doi.org/10.1017/S0022112089000753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shin, H. H., and S.-Y. Hong, 2013: Analysis of resolved and parameterized vertical transports in convective boundary layers at gray-zone resolutions. J. Atmos. Sci., 70, 32483261, https://doi.org/10.1175/JAS-D-12-0290.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shin, H. H., and S.-Y. Hong, 2015: Representation of the subgrid-scale turbulent transport in convective boundary layers at gray-zone resolutions. Mon. Wea. Rev., 143, 250271, https://doi.org/10.1175/MWR-D-14-00116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siebesma, P. A., P. M. M. Soares, and J. Teixeira, 2007: A combined eddy-diffusivity mass-flux approach for the convective boundary layer. J. Atmos. Sci., 64, 12301248, https://doi.org/10.1175/JAS3888.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Sullivan, P. P., and E. G. Patton, 2011: The effect of mesh resolution on convective boundary layer statistics and structures generated by large-eddy simulation. J. Atmos. Sci., 68, 23952415, https://doi.org/10.1175/JAS-D-10-05010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suselj, K., J. Teixeira, and G. Matheou, 2012: Eddy diffusivity/mass flux and shallow cumulus boundary layer: An updraft PDF multiple mass flux scheme. J. Atmos. Sci., 69, 15131533, https://doi.org/10.1175/JAS-D-11-090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suselj, K., J. Teixeira, and D. Chung, 2013: A unified model for moist convective boundary layers based on a stochastic eddy-diffusivity/mass-flux parameterization. J. Atmos. Sci., 70, 19291953, https://doi.org/10.1175/JAS-D-12-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takemi, T., and R. Rotunno, 2003: The effects of subgrid model mixing and numerical filtering in simulations of mesoscale cloud systems. Mon. Wea. Rev., 131, 20852101, https://doi.org/10.1175/1520-0493(2003)131<2085:TEOSMM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teixeira, J., and S. Cheinet, 2004: A simple mixing length formulation for the eddy-diffusivity parameterization of dry convection. Bound.-Layer Meteor., 110, 435453, https://doi.org/10.1023/B:BOUN.0000007230.96303.0d.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teixeira, J., J. P. Ferreira, P. Miranda, T. Haack, J. Doyle, A. P. Siebesma, and R. Salgado, 2004: A new mixing-length formulation for the parameterization of dry convection: Implementation and evaluation in a mesoscale model. Mon. Wea. Rev., 132, 26982707, https://doi.org/10.1175/MWR2808.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teixeira, J., and Coauthors, 2008: Parameterization of the atmospheric boundary layer: A view from just above the inversion. Bull. Amer. Meteor. Soc., 89, 453458, https://doi.org/10.1175/BAMS-89-4-453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Witek, M., J. Teixeira, and G. Matheou, 2011a: An eddy diffusivity–mass flux approach to the vertical transport of turbulent kinetic energy in convective boundary layers. J. Atmos. Sci., 68, 23852393, https://doi.org/10.1175/JAS-D-11-06.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Witek, M., J. Teixeira, and G. Matheou, 2011b: An integrated TKE-based eddy diffusivity/mass flux boundary layer closure for the dry convective boundary layer. J. Atmos. Sci., 68, 15261540, https://doi.org/10.1175/2011JAS3548.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyngaard, J., 2004: Toward numerical modeling in the “terra incognita.” J. Atmos. Sci., 61, 18161826, https://doi.org/10.1175/1520-0469(2004)061<1816:TNMITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, B., J. S. Simon, and F. K. Chow, 2014: The convective boundary layer in the terra incognita. J. Atmos. Sci., 71, 25452563, https://doi.org/10.1175/JAS-D-13-0356.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 448 132 5
PDF Downloads 393 100 3