Mesoscale Gravity Waves in the Mei-Yu Front System

Yuan Wang College of Meteorology and Oceanography, National University of Defense Technology, Nanjing, China

Search for other papers by Yuan Wang in
Current site
Google Scholar
PubMed
Close
,
Lifeng Zhang College of Meteorology and Oceanography, National University of Defense Technology, Nanjing, China

Search for other papers by Lifeng Zhang in
Current site
Google Scholar
PubMed
Close
,
Jun Peng College of Meteorology and Oceanography, National University of Defense Technology, Nanjing, China

Search for other papers by Jun Peng in
Current site
Google Scholar
PubMed
Close
, and
Jiping Guan College of Meteorology and Oceanography, National University of Defense Technology, Nanjing, China

Search for other papers by Jiping Guan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

High-resolution cloud-permitting simulations with the Weather Research and Forecasting (WRF) Model are performed to study the generation, structure, and characteristics of mesoscale gravity waves in an idealized mei-yu front system. Two classes of waves are generated successively during the control simulation. The first class of waves, which is typical of vertically propagating waves excited by the front itself, appears as the front develops before the generation of the prefrontal moist convection and has a coherent fanlike pattern from the troposphere to the lower stratosphere. The second class of waves, which is much stronger than the fanlike waves, appears accompanied by the generation of the moist convection. It is nearly vertically trapped in the troposphere, while it propagates vertically upstream and downstream in the lower stratosphere. The source function analysis is introduced to demonstrate that the mechanical oscillator mechanism plays a dominant role in the generation of convective gravity waves in the lower stratosphere. The vertical motion induced by the deep convection develops upward in the troposphere, overshoots the level of neutral buoyancy (LNB), and impinges on the tropopause. The net buoyancy forces the air parcels to oscillate about the LNB, thus initiating gravity waves in the lower stratosphere. Further spectral analysis shows that the upstream waves have more abundant wavenumber–frequency and phase speed space distributions than the downstream waves. And the former amplify with height while the latter weaken in general under the effect of background northerly wind. The power spectral densities of downstream waves concentrate on faster phase speed than those of upstream waves.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lifeng Zhang, zhanglif_qxxy@sina.cn

Abstract

High-resolution cloud-permitting simulations with the Weather Research and Forecasting (WRF) Model are performed to study the generation, structure, and characteristics of mesoscale gravity waves in an idealized mei-yu front system. Two classes of waves are generated successively during the control simulation. The first class of waves, which is typical of vertically propagating waves excited by the front itself, appears as the front develops before the generation of the prefrontal moist convection and has a coherent fanlike pattern from the troposphere to the lower stratosphere. The second class of waves, which is much stronger than the fanlike waves, appears accompanied by the generation of the moist convection. It is nearly vertically trapped in the troposphere, while it propagates vertically upstream and downstream in the lower stratosphere. The source function analysis is introduced to demonstrate that the mechanical oscillator mechanism plays a dominant role in the generation of convective gravity waves in the lower stratosphere. The vertical motion induced by the deep convection develops upward in the troposphere, overshoots the level of neutral buoyancy (LNB), and impinges on the tropopause. The net buoyancy forces the air parcels to oscillate about the LNB, thus initiating gravity waves in the lower stratosphere. Further spectral analysis shows that the upstream waves have more abundant wavenumber–frequency and phase speed space distributions than the downstream waves. And the former amplify with height while the latter weaken in general under the effect of background northerly wind. The power spectral densities of downstream waves concentrate on faster phase speed than those of upstream waves.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lifeng Zhang, zhanglif_qxxy@sina.cn
Save
  • Alexander, M. J., and L. Pfister, 1995: Gravity wave momentum flux in the lower stratosphere over convection. Geophys. Res. Lett., 22, 20292032, https://doi.org/10.1029/95GL01984.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., and R. A. Vincent, 2000: Gravity waves in the tropical lower stratosphere: A model study of seasonal and interannual variability. J. Geophys. Res., 105, 17 98317 993, https://doi.org/10.1029/2000JD900197.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., J. R. Holton, and D. R. Durran, 1995: The gravity wave response above deep convection in a squall line simulation. J. Atmos. Sci., 52, 22122226, https://doi.org/10.1175/1520-0469(1995)052<2212:TGWRAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., J. H. Beres, and L. Pfister, 2000: Tropical stratospheric gravity wave activity and relationships to clouds. J. Geophys. Res., 105, 22 29922 309, https://doi.org/10.1029/2000JD900326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baik, J.-J., H.-S. Hwang, and H.-Y. Chun, 1999: Transient, linear dynamics of a stably stratified shear flow with thermal forcing and a critical level. J. Atmos. Sci., 56, 483499, https://doi.org/10.1175/1520-0469(1999)056<0483:TLDOAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beres, J. H., M. J. Alexander, and J. R. Holton, 2002: Effects of tropospheric wind shear on the spectrum of convectively generated gravity waves. J. Atmos. Sci., 59, 18051824, https://doi.org/10.1175/1520-0469(2002)059<1805:EOTWSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., 1988: Group velocity and the linear response of stratified fluids to internal heat or mass sources. J. Atmos. Sci., 45, 8193, https://doi.org/10.1175/1520-0469(1988)045<0081:GVATLR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cho, H. R., and G. T. J. Chen, 1995: Mei-yu frontogenesis. J. Atmos. Sci., 52, 21092120, https://doi.org/10.1175/1520-0469(1995)052<2109:MYF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, E.-H., and H.-Y. Chun, 2014: Generation mechanisms of convectively induced internal gravity waves in a three-dimensional framework. Asia-Pac. J. Atmos. Sci., 50, 163177, https://doi.org/10.1007/s13143-014-0005-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, H.-J., H.-Y. Chun, and I.-S. Song, 2007: Characteristics and momentum flux spectrum of convectively forced internal gravity waves in ensemble numerical simulations. J. Atmos. Sci., 64, 37233734, https://doi.org/10.1175/JAS4037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chun, H.-Y., I.-S. Song, and T. Horinouchi, 2005: Momentum flux spectrum of convectively forced gravity waves: Can diabatic forcing be a proxy for convective forcing? J. Atmos. Sci., 62, 41134120, https://doi.org/10.1175/JAS3610.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, T. L., T. Hauf, and J. P. Kuettner, 1986: Convectively forced internal gravity waves: Results from two-dimensional numerical experiments. Quart. J. Roy. Meteor. Soc., 112, 899925, https://doi.org/10.1002/qj.49711247402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y., 1992: Summer monsoon rainfalls in China. J. Meteor. Soc. Japan, 70, 373396, https://doi.org/10.2151/jmsj1965.70.1B_373.

  • Ding, Y., and J. C. L. Chan, 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89, 117142, https://doi.org/10.1007/s00703-005-0125-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fovell, R., D. Durran, and J. R. Holton, 1992: Numerical simulations of convectively generated stratospheric gravity waves. J. Atmos. Sci., 49, 14271442, https://doi.org/10.1175/1520-0469(1992)049<1427:NSOCGS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41, 1003, https://doi.org/10.1029/2001RG000106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gall, R. L., R. T. Williams, and T. L. Clark, 1988: Gravity waves generated during frontogenesis. J. Atmos. Sci., 45, 22042219, https://doi.org/10.1175/1520-0469(1988)045<2204:GWGDF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garner, S. T., 1989: Fully Lagrangian numerical solutions of unbalanced frontogenesis and frontal collapse. J. Atmos. Sci., 46, 717739, https://doi.org/10.1175/1520-0469(1989)046<0717:FLNSOU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffiths, M. A., and M. J. Reeder, 1996: Stratospheric inertia–gravity waves generated in a numerical model of frontogenesis. I: Model solutions. Quart. J. Roy. Meteor. Soc., 122, 11531174, https://doi.org/10.1002/qj.49712253307.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1982: The role of gravity wave induced drag and diffusion in the momentum budget of the mesosphere. J. Atmos. Sci., 39, 791799, https://doi.org/10.1175/1520-0469(1982)039<0791:TROGWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., P. H. Haynes, M. E. McIntyre, A. R. Douglass, R. B. Road, and L. Pfister, 1995: Stratosphere–troposphere exchange. Rev. Geophys., 33, 403439, https://doi.org/10.1029/95RG02097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, B., 2005: Evolution and propagation of MCSs over meiyu fronts and inertia gravitational wave CISK related to “low level moisture frontal zone” (in Chinese). Chin. J. Atmos. Sci., 29, 845853.

    • Search Google Scholar
    • Export Citation
  • Jiang, J., and Y. Ni, 2004: Diagnostic study on the structural characteristics of a typical mei-yu front system and its maintenance mechanism. Adv. Atmos. Sci., 21, 802813, https://doi.org/10.1007/BF02916376.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and P. E. Ciesielski, 2002: Characteristics of the 1998 summer monsoon onset over the northern South China Sea. J. Meteor. Soc. Japan, 80, 561578, https://doi.org/10.2151/jmsj.80.561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S.-Y., and H.-Y. Chun, 2010: Stratospheric gravity waves generated by Typhoon Saomai (2006): Numerical modeling in a moving frame following the typhoon. J. Atmos. Sci., 67, 36173636, https://doi.org/10.1175/2010JAS3374.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S.-Y., H.-Y. Chun, and J.-J. Baik, 2005: A numerical study of gravity waves induced by convection associated with Typhoon Rusa. Geophys. Res. Lett., 32, L24816, https://doi.org/10.1029/2005GL024662.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S.-Y., H.-Y. Chun, and J.-J. Baik, 2007: Sensitivity of typhoon-induced gravity waves to cumulus parameterizations. Geophys. Res. Lett., 34, L15814, https://doi.org/10.1029/2007GL030592.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S.-Y., H.-Y. Chun, and D. L. Wu, 2009: A study on stratospheric gravity waves generated by Typhoon Ewiniar: Numerical simulations and observations. J. Geophys. Res., 114, D22104, https://doi.org/10.1029/2009JD011971.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y.-J., S. D. Eckermann, and H.-Y. Chun, 2003: An overview of the past, present and future of gravity-wave drag parametrization for numerical climate and weather prediction models. Atmos.–Ocean, 41, 6598, https://doi.org/10.3137/ao.410105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., J. Dudhia, and A. D. Hassiotis, 2008: An upper gravity-wave absorbing layer for NWP applications. Mon. Wea. Rev., 136, 39874004, https://doi.org/10.1175/2008MWR2596.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knievel, J. C., G. H. Bryan, and J. P. Hacker, 2007: Explicit numerical diffusion in the WRF Model. Mon. Wea. Rev., 135, 38083824, https://doi.org/10.1175/2007MWR2100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lane, T. P., and M. J. Reeder, 2001: Convectively generated gravity waves and their effect on the cloud environment. J. Atmos. Sci., 58, 24272440, https://doi.org/10.1175/1520-0469(2001)058<2427:CGGWAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lane, T. P., and F. Zhang, 2011: Coupling between gravity waves and tropical convection at mesoscales. J. Atmos. Sci., 68, 25822598, https://doi.org/10.1175/2011JAS3577.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lane, T. P., M. J. Reeder, and T. L. Clark, 2001: Numerical modeling of gravity wave generation by deep tropical convection. J. Atmos. Sci., 58, 12491274, https://doi.org/10.1175/1520-0469(2001)058<1249:NMOGWG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ley, B. E., and W. R. Peltier, 1978: Wave generation and frontal collapse. J. Atmos. Sci., 35, 317, https://doi.org/10.1175/1520-0469(1978)035<0003:WGAFC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lighthill, M. J., 1952: On sound generated aerodynamically. I. General theory. Proc. Roy. Soc. London, 211A, 564587, https://doi.org/10.1098/rspa.1952.0060.

    • Search Google Scholar
    • Export Citation
  • Lim, J. S., 1989: Two-Dimensional Signal and Image Processing. Prentice Hall, 880 pp.

  • Lin, Y. L., and R. B. Smith, 1986: Transient dynamics of airflow near a local heat source. J. Atmos. Sci., 43, 4049, https://doi.org/10.1175/1520-0469(1986)043<0040:TDOANA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. L. Deal, and M. S. Kulie, 1998: Mechanisms of cell regeneration, development, and propagation within a two-dimensional multicell storm. J. Atmos. Sci., 55, 18671886, https://doi.org/10.1175/1520-0469(1998)055<1867:MOCRDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1974: Wave–CISK in the tropics. J. Atmos. Sci., 31, 156179, https://doi.org/10.1175/1520-0469(1974)031<0156:WCITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1981: Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res., 86, 97079714, https://doi.org/10.1029/JC086iC10p09707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, https://doi.org/10.1175/2008MWR2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nastrom, G., M. R. Peterson, J. L. Green, K. S. Gage, and T. E. VanZandt, 1990: Sources of gravity wave activity seen in the vertical velocities observed by the Flatland VHF radar. J. Appl. Meteor., 29, 783792, https://doi.org/10.1175/1520-0450(1990)029<0783:SOGWAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, M. E., R. A. Pielke, and W. R. Cotton, 1991: Thermally forced gravity waves in an atmosphere at rest. J. Atmos. Sci., 48, 18691884, https://doi.org/10.1175/1520-0469(1991)048<1869:TFGWIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ninomiya, K., and T. Murakami, 1987: The early summer rainy season (baiu) over Japan. Monsoon Meteorology, C. P. Chang. and T. N. Krishnamurti, Eds., Oxford University Press, 93–121.

  • Orlanski, I., and B. B. Ross, 1984: The evolution of an observed cold front. Part II: Mesoscale dynamics. J. Atmos. Sci., 41, 16691703, https://doi.org/10.1175/1520-0469(1984)041<1669:TEOAOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pandya, R. E., and M. J. Alexander, 1999: Linear stratospheric gravity waves above convective thermal forcing. J. Atmos. Sci., 56, 24342446, https://doi.org/10.1175/1520-0469(1999)056<2434:LSGWAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pandya, R. E., D. R. Durran, and C. S. Bretherton, 1993: Comments on “Thermally forced gravity waves in an atmosphere at rest.” J. Atmos. Sci., 50, 40974101, https://doi.org/10.1175/1520-0469(1993)050<4097:COFGWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, J., L. Zhang, Y. Luo, and Y. Zhang, 2014a: Mesoscale energy spectra of the mei-yu front system. Part I: Kinetic energy spectra. J. Atmos. Sci., 71, 3755, https://doi.org/10.1175/JAS-D-13-085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, J., L. Zhang, Y. Luo, and C. Xiong, 2014b: Mesoscale energy spectra of the mei-yu front system. Part II: Moist available potential energy spectra. J. Atmos. Sci., 71, 14101424, https://doi.org/10.1175/JAS-D-13-0319.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfister, L., S. Scott, and M. Loewenstein, 1993: Mesoscale disturbances in the tropical stratosphere excited by convection: Observations and effects on the stratospheric momentum budget. J. Atmos. Sci., 50, 10581075, https://doi.org/10.1175/1520-0469(1993)050<1058:MDITTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierce, A. D., and S. C. Coroniti, 1966: A mechanism for the generation of acoustic–gravity waves during thunderstorm formation. Nature, 210, 12091210, https://doi.org/10.1038/2101209a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, and T. L. Keller, 1999: Deep-tropospheric gravity waves created by leeside cold fronts. J. Atmos. Sci., 56, 29863009, https://doi.org/10.1175/1520-0469(1999)056<2986:DTGWCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reeder, M. J., and M. A. Griffiths, 1996: Stratospheric inertia–gravity waves generated in a numerical model of frontogenesis. II: Wave sources, generation mechanisms and momentum fluxes. Quart. J. Roy. Meteor. Soc., 122, 11751195, https://doi.org/10.1002/qj.49712253308.

    • Search Google Scholar
    • Export Citation
  • Salby, M. L., and R. R. Garcia, 1987: Transient response to localized episodic heating in the tropics. Part I: Excitation and short-time near-field behavior. J. Atmos. Sci., 44, 458498, https://doi.org/10.1175/1520-0469(1987)044<0458:TRTLEH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., 1980: Turbulent mixing within tropopause folds as a mechanism for the exchange of chemical constituents between the stratosphere and troposphere. J. Atmos. Sci., 37, 9941004, https://doi.org/10.1175/1520-0469(1980)037<0994:TMWTFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., and P. J. Kennedy, 1975: Aircraft measurements of wave motions within frontal zone systems. Mon. Wea. Rev., 103, 10501054, https://doi.org/10.1175/1520-0493(1975)103<1050:AMOWMW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Snyder, C., W. C. Skamarock, and R. Rotunno, 1993: Frontal dynamics near and following frontal collapse. J. Atmos. Sci., 50, 31943211, https://doi.org/10.1175/1520-0469(1993)050<3194:FDNAFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, I.-S., H.-Y. Chun, and T. P. Lane, 2003: Generation mechanisms of convectively forced internal gravity waves and their propagation to the stratosphere. J. Atmos. Sci., 60, 19601980, https://doi.org/10.1175/1520-0469(2003)060<1960:GMOCFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, S., and L. Chen, 1987: A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology, C. P. Chang and T. N. Krishnamurti, Eds., Oxford University Press, 60–92.

  • Wang, S., and F. Zhang, 2007: Sensitivity of mesoscale gravity waves to the baroclinicity of jet-front systems. Mon. Wea. Rev., 135, 670688, https://doi.org/10.1175/MWR3314.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, J., and F. Zhang, 2014: Mesoscale gravity waves in moist baroclinic jet–front systems. J. Atmos. Sci., 71, 929952, https://doi.org/10.1175/JAS-D-13-0171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, J., F. Zhang, and J. H. Richter, 2016: An analysis of gravity wave spectral characteristics in moist baroclinic jet–front systems. J. Atmos. Sci., 73, 31333155, https://doi.org/10.1175/JAS-D-15-0316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., and Z. Sun, 2004: Dynamic study of influence of inertial gravity waves induced by unbalanced flow on meiyu front heavy rain. Acta Meteor. Sin., 18, 467478.

    • Search Google Scholar
    • Export Citation
  • Zhou, Y., S. Gao, and S. S. P. Shen, 2004: A diagnostic study of formation and structures of the meiyu front system over East Asia. J. Meteor. Soc. Japan, 82, 15651576, https://doi.org/10.2151/jmsj.82.1565.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 281 107 7
PDF Downloads 239 82 6