On Boussinesq Dynamics near the Tropopause

Olivier Asselin McGill University, Montreal, Quebec, Canada

Search for other papers by Olivier Asselin in
Current site
Google Scholar
PubMed
Close
,
Peter Bartello McGill University, Montreal, Quebec, Canada

Search for other papers by Peter Bartello in
Current site
Google Scholar
PubMed
Close
, and
David N. Straub McGill University, Montreal, Quebec, Canada

Search for other papers by David N. Straub in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The near-tropopause energy spectrum closely follows a −5/3 power law at mesoscales. Most theories addressing the mesoscale spectrum assume unbalanced dynamics but ignore the tropopause (near which the bulk of the data were collected). Conversely, it has also been proposed that the mesoscale spectrum results from tropopause-induced alterations of geostrophic turbulence. This paper seeks to reconcile these a priori mutually exclusive theories by presenting simulations that permit both unbalanced motion and tropopause-induced effects. The model integrates the nonhydrostatic Boussinesq equations in the presence of a rapidly varying background stratification profile (an idealized tropopause). Decaying turbulence simulations were performed over a wide range of Rossby numbers. In the limit of weak flow (U ≲ 1 m s−1), the essential features of the Boussinesq simulations are well captured by a quasigeostrophic version of the model: secondary roll-ups of filaments and shallow spectral slopes are observed near the tropopause but not elsewhere. However, these tropopause-induced effects rapidly disappear with increasing flow strength. For flow strengths more typical of the tropopause (U ~ 10 m s−1), the spectrum develops a shallow, near −5/3 tail associated with fast-time-scale, unbalanced motion. In contrast to weak flows, this spectral shallowing is evident at any altitude and regardless of the presence of a tropopause. Diagnostics of the fast component of motion reveal significant inertia–gravity wave activity at large horizontal scales (where the balanced flow dominates). However, no evidence points to such activity in the shallow range. That is, the mesoscale of the model is dominated by unbalanced turbulence, not waves. Implications and limitations of these findings are discussed.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Olivier Asselin, olivier.asselin@mail.mcgill.ca

Abstract

The near-tropopause energy spectrum closely follows a −5/3 power law at mesoscales. Most theories addressing the mesoscale spectrum assume unbalanced dynamics but ignore the tropopause (near which the bulk of the data were collected). Conversely, it has also been proposed that the mesoscale spectrum results from tropopause-induced alterations of geostrophic turbulence. This paper seeks to reconcile these a priori mutually exclusive theories by presenting simulations that permit both unbalanced motion and tropopause-induced effects. The model integrates the nonhydrostatic Boussinesq equations in the presence of a rapidly varying background stratification profile (an idealized tropopause). Decaying turbulence simulations were performed over a wide range of Rossby numbers. In the limit of weak flow (U ≲ 1 m s−1), the essential features of the Boussinesq simulations are well captured by a quasigeostrophic version of the model: secondary roll-ups of filaments and shallow spectral slopes are observed near the tropopause but not elsewhere. However, these tropopause-induced effects rapidly disappear with increasing flow strength. For flow strengths more typical of the tropopause (U ~ 10 m s−1), the spectrum develops a shallow, near −5/3 tail associated with fast-time-scale, unbalanced motion. In contrast to weak flows, this spectral shallowing is evident at any altitude and regardless of the presence of a tropopause. Diagnostics of the fast component of motion reveal significant inertia–gravity wave activity at large horizontal scales (where the balanced flow dominates). However, no evidence points to such activity in the shallow range. That is, the mesoscale of the model is dominated by unbalanced turbulence, not waves. Implications and limitations of these findings are discussed.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Olivier Asselin, olivier.asselin@mail.mcgill.ca
Save
  • Asselin, O., P. Bartello, and D. N. Straub, 2016a: Boussinesq dynamics of an idealized tropopause. Proc. Eighth Int. Symp. on Stratified Flows, San Diego, CA, IAHR, 7 pp., https://cpaess.ucar.edu/sites/default/files/meetings/2016/issf/papers/asselin-olivier-article.pdf.

  • Asselin, O., P. Bartello, and D. N. Straub, 2016b: On quasigeostrophic dynamics near the tropopause. Phys. Fluids, 28, 026601, https://doi.org/10.1063/1.4941761.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bartello, P., 1995: Geostrophic adjustment and inverse cascades in rotating stratified turbulence. J. Atmos. Sci., 52, 44104428, https://doi.org/10.1175/1520-0469(1995)052<4410:GAAICI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bartello, P., 2010: Quasigeostrophic and stratified turbulence in the atmosphere. IUTAM Symposium on Turbulence in the Atmosphere and Oceans: Proceedings of the IUTAM Symposium on Turbulence in the Atmosphere and Oceans, D. Dritschel, Ed., IUTM Bookseries, Vol. 28, Springer, 117130.

    • Crossref
    • Export Citation
  • Bembenek, E., F. J. Poulin, and M. L. Waite, 2015: Realizing surface-driven flows in the primitive equations. J. Phys. Oceanogr., 45, 13761392, https://doi.org/10.1175/JPO-D-14-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Birner, T., 2006: Fine-scale structure of the extratropical tropopause region. J. Geophys. Res., 111, D04104, https://doi.org/10.1029/2005JD006301.

    • Search Google Scholar
    • Export Citation
  • Blumen, W., 1978: Uniform potential vorticity flow: Part I. Theory of wave interactions and two-dimensional turbulence. J. Atmos. Sci., 35, 774783, https://doi.org/10.1175/1520-0469(1978)035<0774:UPVFPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burgess, B. H., A. R. Erler, and T. G. Shepherd, 2013: The troposphere-to-stratosphere transition in kinetic energy spectra and nonlinear spectral fluxes as seen in ECMWF analyses. J. Atmos. Sci., 70, 669687, https://doi.org/10.1175/JAS-D-12-0129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., O. Bühler, and R. Ferrari, 2016: The dynamics of mesoscale winds in the upper troposphere and lower stratosphere. J. Atmos. Sci., 73, 48534872, https://doi.org/10.1175/JAS-D-16-0108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capet, X., P. Klein, B. L. Hua, G. Lapeyre, and J. C. McWilliams, 2008: Surface kinetic energy transfer in surface quasi-geostrophic flows. J. Fluid Mech., 604, 165174, https://doi.org/10.1017/S0022112008001110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1971: Geostrophic turbulence. J. Atmos. Sci., 28, 10871095, https://doi.org/10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cho, J. Y. N., and Coauthors, 1999a: Horizontal wavenumber spectra of winds, temperature, and trace gases during the Pacific exploratory missions: 1. Climatology. J. Geophys. Res., 104, 56975716, https://doi.org/10.1029/98JD01825.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cho, J. Y. N., R. E. Newell, and J. D. Barrick, 1999b: Horizontal wavenumber spectra of winds, temperature, and trace gases during the Pacific exploratory missions: 2. Gravity waves, quasi-two-dimensional turbulence, and vertical modes. J. Geophys. Res., 104, 16 29716 308, https://doi.org/10.1029/1999JD900068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, Y. G., S. Lee, A. McDonald, and D. Hooper, 2006: Wind-profiler observations of gravity waves produced by convection at mid-latitudes. Atmos. Chem. Phys., 6, 28252836, https://doi.org/10.5194/acp-6-2825-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deusebio, E., A. Vallgren, and E. Lindborg, 2013: The route to dissipation in strongly stratified and rotating flows. J. Fluid Mech., 720, 66103, https://doi.org/10.1017/jfm.2012.611.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dewan, E. M., 1979: Stratospheric wave spectra resembling turbulence. Science, 204, 832835, https://doi.org/10.1126/science.204.4395.832.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1 (3), 3352, https://doi.org/10.3402/tellusa.v1i3.8507.

  • Falkovich, G., 1994: Bottleneck phenomenon in developed turbulence. Phys. Fluids, 6, 14111414, https://doi.org/10.1063/1.868255.

  • Frehlich, R., and R. Sharman, 2010: Climatology of velocity and temperature turbulence statistics determined from rawinsonde and ACARS/AMDAR data. J. Appl. Meteor. Climatol., 49, 11491169, https://doi.org/10.1175/2010JAMC2196.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamilton, K., Y. O. Takahashi, and W. Ohfuchi, 2008: Mesoscale spectrum of atmospheric motions investigated in a very fine resolution global general circulation model. J. Geophys. Res., 113, D18110, https://doi.org/10.1029/2008JD009785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., R. T. Pierrehumbert, S. T. Garner, and K. L. Swanson, 1995: Surface quasi-geostrophic dynamics. J. Fluid Mech., 282, 120, https://doi.org/10.1017/S0022112095000012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoinka, K. P., 1999: Temperature, humidity, and wind at the global tropopause. Mon. Wea. Rev., 127, 22482265, https://doi.org/10.1175/1520-0493(1999)127<2248:THAWAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, E., 1978: Topographically bound vortices. Geophys. Astrophys. Fluid Dyn., 11, 6171, https://doi.org/10.1080/03091927808242652.

  • Juckes, M., 1994: Quasigeostrophic dynamics of the tropopause. J. Atmos. Sci., 51, 27562768, https://doi.org/10.1175/1520-0469(1994)051<2756:QDOTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kafiabad, H. A., and P. Bartello, 2016a: Balance dynamics in rotating stratified turbulence. J. Fluid Mech., 795, 914949, https://doi.org/10.1017/jfm.2016.164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kafiabad, H. A., and P. Bartello, 2016b: Rotating stratified turbulence and the slow manifold. Comput. Fluids, 151, 2334, https://doi.org/10.1016/j.compfluid.2016.10.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karoly, D., G. Roff, and M. Reeder, 1996: Gravity wave activity associated with tropical convection detected in TOGA COARE sounding data. Geophys. Res. Lett., 23, 261264, https://doi.org/10.1029/96GL00023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lapeyre, G., 2017: Surface quasi-geostrophy. Fluids, 2, 7, https://doi.org/10.3390/fluids2010007.

  • Lindborg, E., 2006: The energy cascade in a strongly stratified fluid. J. Fluid Mech., 550, 207242, https://doi.org/10.1017/S0022112005008128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindborg, E., 2015: A Helmholtz decomposition of structure functions and spectra calculated from aircraft data. J. Fluid Mech., 762, R4, https://doi.org/10.1017/jfm.2014.685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nastrom, G. D., and K. S. Gage, 1985: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci., 42, 950960, https://doi.org/10.1175/1520-0469(1985)042<0950:ACOAWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nastrom, G. D., D. C. Fritts, and K. S. Gage, 1987: An investigation of terrain effects on the mesoscale spectrum of atmospheric motions. J. Atmos. Sci., 44, 30873096, https://doi.org/10.1175/1520-0469(1987)044<3087:AIOTEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ngan, K., P. Bartello, and D. Straub, 2008: Dissipation of synoptic-scale flow by small-scale turbulence. J. Atmos. Sci., 65, 766791, https://doi.org/10.1175/2007JAS2265.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, K. S., and E. Bernard, 2013: Geostrophic turbulence near rapid changes in stratification. Phys. Fluids, 25, 046601, https://doi.org/10.1063/1.4799470.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spyksma, K., M. Magcalas, and N. Campbell, 2012: Quantifying effects of hyperviscosity on isotropic turbulence. Phys. Fluids, 24, 125102, https://doi.org/10.1063/1.4768809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sukhatme, J., and R. T. Pierrehumbert, 2002: Surface quasigeostrophic turbulence: The study of an active scalar. Chaos, 12, 439450, https://doi.org/10.1063/1.1480758.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tulloch, R., and K. S. Smith, 2006: A theory for the atmospheric energy spectrum: Depth-limited temperature anomalies at the tropopause. Proc. Natl. Acad. Sci. USA, 103, 14 69014 694, https://doi.org/10.1073/pnas.0605494103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tulloch, R., and K. S. Smith, 2009: Quasigeostrophic turbulence with explicit surface dynamics: Application to the atmospheric energy spectrum. J. Atmos. Sci., 66, 450467, https://doi.org/10.1175/2008JAS2653.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallgren, A., E. Deusebio, and E. Lindborg, 2011: Possible explanation of the atmospheric kinetic and potential energy spectra. Phys. Rev. Lett., 107, 268501, https://doi.org/10.1103/PhysRevLett.107.268501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. Cambridge University Press, 745 pp.

    • Crossref
    • Export Citation
  • VanZandt, T., 1982: A universal spectrum of buoyancy waves in the atmosphere. Geophys. Res. Lett., 9, 575578, https://doi.org/10.1029/GL009i005p00575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waite, M. L., and C. Snyder, 2009: The mesoscale kinetic energy spectrum of a baroclinic life cycle. J. Atmos. Sci., 66, 883901, https://doi.org/10.1175/2008JAS2829.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waite, M. L., and C. Snyder, 2013: Mesoscale energy spectra of moist baroclinic waves. J. Atmos. Sci., 70, 12421256, https://doi.org/10.1175/JAS-D-11-0347.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 245 70 7
PDF Downloads 192 56 1