Predictability and Dynamics of Hurricane Joaquin (2015) Explored through Convection-Permitting Ensemble Sensitivity Experiments

Robert G. Nystrom Department of Meteorology and Atmospheric Science, and Center for Advanced Data Assimilation and Predictability Techniques, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Robert G. Nystrom in
Current site
Google Scholar
PubMed
Close
,
Fuqing Zhang Department of Meteorology and Atmospheric Science, and Center for Advanced Data Assimilation and Predictability Techniques, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Fuqing Zhang in
Current site
Google Scholar
PubMed
Close
,
Erin B. Munsell NASA Goddard Space Flight Center, Greenbelt, Maryland
Universities Space Research Association, Columbia, Maryland

Search for other papers by Erin B. Munsell in
Current site
Google Scholar
PubMed
Close
,
Scott A. Braun NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Scott A. Braun in
Current site
Google Scholar
PubMed
Close
,
Jason A. Sippel NOAA/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, Miami, Florida

Search for other papers by Jason A. Sippel in
Current site
Google Scholar
PubMed
Close
,
Yonghui Weng Department of Meteorology and Atmospheric Science, and Center for Advanced Data Assimilation and Predictability Techniques, The Pennsylvania State University, University Park, Pennsylvania
I. M. System Group, Rockville, Maryland

Search for other papers by Yonghui Weng in
Current site
Google Scholar
PubMed
Close
, and
Kerry Emanuel Lorenz Center, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Kerry Emanuel in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Real-time ensemble forecasts from the Pennsylvania State University (PSU) WRF EnKF system (APSU) for Hurricane Joaquin (2015) are examined in this study. The ensemble forecasts, from early in Joaquin’s life cycle, displayed large track spread, with nearly half of the ensemble members tracking Joaquin toward the U.S. East Coast and the other half tracking Joaquin out to sea. The ensemble forecasts also displayed large intensity spread, with many of the members developing into major hurricanes and other ensemble members not intensifying at all.

Initial condition differences from the regions greater than (less than) 300 km were isolated by effectively removing initial condition differences in desired regions through relaxing each ensemble member to GFS (APSU) initial conditions. The regions of initial condition errors contributing to the track spread were examined, and the dominant source of track errors arose from the region greater than 300 km from the tropical cyclone center. Further examination of the track divergence revealed that the region between 600 and 900 km from the initial position of Joaquin was found to be the largest source of initial condition errors that contributed to this divergence. Small differences in the low-level steering flow, originating from perturbations between 600 and 900 km from the initial position, appear to have resulted in the bifurcation of the forecast tracks of Joaquin. The initial condition errors north of the initial position of Joaquin were also shown to contribute most significantly to the track divergence. The region inside of 300 km, specifically, the initial intensity of Joaquin, was the dominant source of initial condition errors contributing to the intensity spread.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Professor Fuqing Zhang, fzhang@psu.edu

This article is included in the Tropical Cyclone Intensity Experiment (TCI) Special Collection.

Abstract

Real-time ensemble forecasts from the Pennsylvania State University (PSU) WRF EnKF system (APSU) for Hurricane Joaquin (2015) are examined in this study. The ensemble forecasts, from early in Joaquin’s life cycle, displayed large track spread, with nearly half of the ensemble members tracking Joaquin toward the U.S. East Coast and the other half tracking Joaquin out to sea. The ensemble forecasts also displayed large intensity spread, with many of the members developing into major hurricanes and other ensemble members not intensifying at all.

Initial condition differences from the regions greater than (less than) 300 km were isolated by effectively removing initial condition differences in desired regions through relaxing each ensemble member to GFS (APSU) initial conditions. The regions of initial condition errors contributing to the track spread were examined, and the dominant source of track errors arose from the region greater than 300 km from the tropical cyclone center. Further examination of the track divergence revealed that the region between 600 and 900 km from the initial position of Joaquin was found to be the largest source of initial condition errors that contributed to this divergence. Small differences in the low-level steering flow, originating from perturbations between 600 and 900 km from the initial position, appear to have resulted in the bifurcation of the forecast tracks of Joaquin. The initial condition errors north of the initial position of Joaquin were also shown to contribute most significantly to the track divergence. The region inside of 300 km, specifically, the initial intensity of Joaquin, was the dominant source of initial condition errors contributing to the intensity spread.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Professor Fuqing Zhang, fzhang@psu.edu

This article is included in the Tropical Cyclone Intensity Experiment (TCI) Special Collection.

Save
  • Barker, D. M., W. Huang, Y. R. Guo, A. J. Bourgeois, and Q. N. Xiao, 2004: A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon. Wea. Rev., 132, 897914, https://doi.org/10.1175/1520-0493(2004)132<0897:ATVDAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bassill, N. P., 2015: An analysis of the operational GFS simplified Arakawa Schubert parametrization within a WRF framework: A Hurricane Sandy (2012) long-term track forecast perspective. J. Geophys. Res. Atmos., 120, 378398, https://doi.org/10.1002/2014JD022211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, R., 2016: Tropical cyclone report: Hurricane Joaquin (AL112015). National Hurricane Center Tech. Rep., 36 pp.

  • Cangialosi, J., and J. Franklin, 2016: National Hurricane Center forecast verification report: 2015 hurricane season. NOAA Rep., 69 pp.

  • Chan, J. C. L., 2005: The physics of tropical cyclone motion. Annu. Rev. Fluid Mech., 37, 99128, https://doi.org/10.1146/annurev.fluid.37.061903.175702.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., and K. K. Li, 2005: Ensemble forecasting of tropical cyclone motion using a barotropic model. Part III: Combining perturbations of the environment and the vortex. Meteor. Atmos. Phys., 90, 109126, https://doi.org/10.1007/s00703-004-0092-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., and D. Zhang, 2013: On the rapid intensification of Hurricane Wilma (2005). Part II: Convective bursts and the upper-level warm core. J. Atmos. Sci., 70, 146162, https://doi.org/10.1175/JAS-D-12-062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., and S. G. Gopalakrishan, 2015: A study of the asymmetric rapid intensification of Hurricane Earl (2010) using the HWRF system. J. Atmos. Sci., 72, 531550, https://doi.org/10.1175/JAS-D-14-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheung, K. K., and J. C. L. Chan, 1999a: Ensemble forecasting of tropical cyclone motion using a barotropic model. Part I: Perturbations of the environment. Mon. Wea. Rev., 127, 12291243, https://doi.org/10.1175/1520-0493(1999)127<1229:EFOTCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheung, K. K., and J. C. L. Chan, 1999b: Ensemble forecasting of tropical cyclone motion using a barotropic model. Part II: Perturbations of the vortex. Mon. Wea. Rev., 127, 26172640, https://doi.org/10.1175/1520-0493(1999)127<2617:EFOTCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, K., and C. J. Neumann, 1986: The relationship between tropical cyclone motion and environmental geostrophic flows. Mon. Wea. Rev., 114, 115122, https://doi.org/10.1175/1520-0493(1986)114<0115:TRBTCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., and F. Zhang, 2016: On the predictability and error sources of tropical cyclone intensity forecasts. J. Atmos. Sci., 73, 37393747, https://doi.org/10.1175/JAS-D-16-0100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., and F. Zhang, 2017: The role of inner-core moisture in tropical cyclone predictability and practical forecast skill. J. Atmos. Sci., 74, 23152324, https://doi.org/10.1175/JAS-D-17-0008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fiorino, M., and R. L. Elsberry, 1989: Some aspects of vortex structure related to tropical cyclone motion. J. Atmos. Sci., 46, 975990, https://doi.org/10.1175/1520-0469(1989)046<0975:SAOVSR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galarneau, T. J., and C. A. Davis, 2013: Diagnosing forecast errors in tropical cyclone motion. Mon. Wea. Rev., 141, 405430, https://doi.org/10.1175/MWR-D-12-00071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gamache, J. F., F. D. Marks Jr., and F. Roux, 1995: Comparison of three airborne Doppler sampling techniques with airborne in situ wind observations in Hurricane Gustav (1990). J. Atmos. Oceanic Technol., 12, 171181, https://doi.org/10.1175/1520-0426(1995)012<0171:COTADS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • George, J. E., and W. M. Gray, 1976: Tropical cyclone motion and surrounding parameter relationships. J. Appl. Meteor., 15, 12521264, https://doi.org/10.1175/1520-0450(1976)015<1252:TCMASP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., J. S. Whitaker, M. Fiorino, and S. G. Benjamin, 2011: Global ensemble predictions of 2009’s tropical cyclones initialized with an ensemble Kalman filter. Mon. Wea. Rev., 139, 668688, https://doi.org/10.1175/2010MWR3456.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harnisch, F., and M. Weissmann, 2010: Sensitivity of typhoon forecasts to different subsets of targeted dropsonde observations. Mon. Wea. Rev., 138, 26642680, https://doi.org/10.1175/2010MWR3309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Komaromi, W. A., and S. J. Majumdar, 2014: Ensemble-based error and predictability metrics associated with tropical cyclogenesis. Part I: Basinwide perspective. Mon. Wea. Rev., 142, 28792898, https://doi.org/10.1175/MWR-D-13-00370.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Komaromi, W. A., S. J. Majumdar, and E. D. Rappin, 2011: Diagnosing initial condition sensitivity of Typhoon Sinlaku (2008) and Hurricane Ike (2008). Mon. Wea. Rev., 139, 32243242, https://doi.org/10.1175/MWR-D-10-05018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., 1993: A climatology of intense (or major) Atlantic hurricanes. Mon. Wea. Rev., 121, 17031713, https://doi.org/10.1175/1520-0493(1993)121<1703:ACOIMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magnusson, L., J. Bidlot, S. T. Lang, A. Thorpe, N. Wedi, and M. Yanmaguchi, 2014: Evaluation of medium-range forecasts of Hurricane Sandy. Mon. Wea. Rev., 142, 19621981, https://doi.org/10.1175/MWR-D-13-00228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Majumdar, S. J., S. D. Aberson, C. H. Bishop, R. Buizza, M. S. Peng, and C. A. Reynolds, 2006: A comparison of adaptive observing guidance for Atlantic tropical cyclones. Mon. Wea. Rev., 134, 23542372, https://doi.org/10.1175/MWR3193.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munsell, E. B., and F. Zhang, 2014: Prediction and uncertainty of Hurricane Sandy (2012) explored through a real‐time cloud‐permitting ensemble analysis and forecast system assimilating airborne Doppler radar observations. J. Adv. Model. Earth Syst., 6, 3858, https://doi.org/10.1002/2013MS000297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munsell, E. B., F. Zhang, and D. P. Stern, 2013: Predictability and dynamics of a nonintensifying tropical storm: Erika (2009). J. Atmos. Sci., 70, 25052524, https://doi.org/10.1175/JAS-D-12-0243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munsell, E. B., F. Zhang, J. A. Sippel, S. A. Braun, and Y. Weng, 2017: Dynamics and predictability of the intensification of Hurricane Edouard (2014). J. Atmos. Sci., 74, 573595, https://doi.org/10.1175/JAS-D-16-0018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rios-Berrios, R., and R. Torn, 2016: An ensemble approach to investigate tropical cyclone intensification in sheared environments. Part I: Katia (2011). J. Atmos. Sci., 73, 7193, https://doi.org/10.1175/JAS-D-15-0052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sippel, J. A., and F. Zhang, 2010: Factors affecting the predictability of Hurricane Humberto (2007). J. Atmos. Sci., 67, 17591778, https://doi.org/10.1175/2010JAS3172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sippel, J. A., S. A. Braun, and C.-J. Shie, 2011: Environmental influences on the strength of Tropical Storm Debby (2006). J. Atmos. Sci., 68, 25572581, https://doi.org/10.1175/2011JAS3648.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Tang, B., and K. Emanuel, 2010: Midlevel ventilation’s constraint on tropical cyclone intensity. J. Atmos. Sci., 67, 18171830, https://doi.org/10.1175/2010JAS3318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, D., and F. Zhang, 2014: Effect of environmental shear, sea-surface temperature, and ambient moisture on the formation and predictability of tropical cyclones: An ensemble-mean perspective. J. Adv. Model. Earth Syst., 6, 384404, https://doi.org/10.1002/2014MS000314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, D., and F. Zhang, 2015: Effects of vertical wind shear on the predictability of tropical cyclones: Practical versus intrinsic limit. J. Adv. Model. Earth Syst., 7, 15341553, https://doi.org/10.1002/2015MS000474.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., 2016: Evaluation of atmospheric and ocean initial condition uncertainty and stochastic exchange coefficients on ensemble tropical cyclone intensity forecasts. Mon. Wea. Rev., 144, 34873506, https://doi.org/10.1175/MWR-D-16-0108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and D. Cook, 2013: The role of vortex and environment errors in genesis forecasts of Hurricanes Danielle and Karl (2010). Mon. Wea. Rev., 141, 232251, https://doi.org/10.1175/MWR-D-12-00086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., J. S. Whitaker, P. Pegion, T. M. Hamill, and G. J. Hakim, 2015: Diagnosis of the source of GFS medium-range track errors in Hurricane Sandy (2012). Mon. Wea. Rev., 143, 132152, https://doi.org/10.1175/MWR-D-14-00086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velden, C. S., 1993: The relationship between tropical cyclone motion, intensity, and the vertical extent of the environmental steering layer in the Atlantic basin. Preprints, 20th Conf. on Hurricanes and Tropical Meteorology, San Antonio, TX, Amer. Meteor. Soc., 31–34.

  • Velden, C. S., and L. M. Leslie, 1991: The basic relationship between tropical cyclone intensity and the depth pf the environmental steering layer in the Australian region. Wea. Forecasting, 6, 244253, https://doi.org/10.1175/1520-0434(1991)006<0244:TBRBTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weng, Y., and F. Zhang, 2012: Assimilating airborne Doppler radar observations with an ensemble Kalman filter for convection-permitting hurricane initialization and prediction: Katrina (2005). Mon. Wea. Rev., 140, 841859, https://doi.org/10.1175/2011MWR3602.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weng, Y., and F. Zhang, 2016: Advances in convection-permitting tropical cyclone analysis and prediction through EnKF assimilation of reconnaissance aircraft observations. J. Meteor. Soc. Japan, 94, 345358, https://doi.org/10.2151/jmsj.2016-018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C., and K. A. Emanuel, 1995: Potential vorticity diagnostics of hurricane movement. Part II: Tropical Storm Ana (1991) and Hurricane Andrew (1992). Mon. Wea. Rev., 123, 93109, https://doi.org/10.1175/1520-0493(1995)123<0093:PVDOHM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., and J. A. Sippel, 2009: Effects of moist convection on hurricane predictability. J. Atmos. Sci., 66, 19441961, https://doi.org/10.1175/2009JAS2824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., and D. Tao, 2013: Effects of vertical wind shear on the predictability of tropical cyclones. J. Atmos. Sci., 70, 975983, https://doi.org/10.1175/JAS-D-12-0133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., and Y. Weng, 2015: Predicting hurricane intensity and associated hazards: A five-year real-time forecast experiment with assimilation of airborne Doppler radar observations. Bull. Amer. Meteor. Soc., 96, 2533, https://doi.org/10.1175/BAMS-D-13-00231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., and T. N. Krishnamurti, 1997: Ensemble forecasting of hurricane tracks. Bull. Amer. Meteor. Soc., 78, 27852795, https://doi.org/10.1175/1520-0477(1997)078<2785:EFOHT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 745 274 30
PDF Downloads 399 117 18