Large-Eddy Simulation of the Stratocumulus-Capped Boundary Layer with Explicit Filtering and Reconstruction Turbulence Modeling

Xiaoming Shi Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California

Search for other papers by Xiaoming Shi in
Current site
Google Scholar
PubMed
Close
,
Hannah L. Hagen Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California

Search for other papers by Hannah L. Hagen in
Current site
Google Scholar
PubMed
Close
,
Fotini Katopodes Chow Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California

Search for other papers by Fotini Katopodes Chow in
Current site
Google Scholar
PubMed
Close
,
George H. Bryan National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by George H. Bryan in
Current site
Google Scholar
PubMed
Close
, and
Robert L. Street Department of Civil and Environmental Engineering, Stanford University, Stanford, California

Search for other papers by Robert L. Street in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Large-eddy simulation (LES) has been an essential tool in the development of theory and parameterizations for clouds, but when applied to stratocumulus clouds under sharp temperature inversions, many LES models produce an unrealistically thin cloud layer and a decoupled boundary layer structure. Here, explicit filtering and reconstruction are used for simulation of stratocumulus clouds observed during the first research flight (RF01) of the Second Dynamics and Chemistry of the Marine Stratocumulus field study (DYCOMS II). The dynamic reconstruction model (DRM) is used within an explicit filtering and reconstruction framework, partitioning subfilter-scale motions into resolvable subfilter scales (RSFSs) and unresolvable subgrid scales (SGSs). The former are reconstructed, and the latter are modeled. Differing from traditional turbulence models, the reconstructed RSFS stress/fluxes can produce backscatter of turbulence kinetic energy (TKE) and, importantly, turbulence potential energy (TPE). The modeled backscatter reduces entrainment at the cloud top and, meanwhile, strengthens resolved turbulence through preserving TKE and TPE, resulting in a realistic boundary layer with an adequate amount of cloud water and vertically coupled turbulent eddies. Additional simulations are performed in the terra incognita, when the grid spacing of a simulation becomes comparable to the size of the most energetic eddies. With 20-m vertical and 1-km horizontal grid spacings, simulations using DRM provide a reasonable representation of bulk properties of the stratocumulus-capped boundary layer.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiaoming Shi, shixm@berkeley.edu

Abstract

Large-eddy simulation (LES) has been an essential tool in the development of theory and parameterizations for clouds, but when applied to stratocumulus clouds under sharp temperature inversions, many LES models produce an unrealistically thin cloud layer and a decoupled boundary layer structure. Here, explicit filtering and reconstruction are used for simulation of stratocumulus clouds observed during the first research flight (RF01) of the Second Dynamics and Chemistry of the Marine Stratocumulus field study (DYCOMS II). The dynamic reconstruction model (DRM) is used within an explicit filtering and reconstruction framework, partitioning subfilter-scale motions into resolvable subfilter scales (RSFSs) and unresolvable subgrid scales (SGSs). The former are reconstructed, and the latter are modeled. Differing from traditional turbulence models, the reconstructed RSFS stress/fluxes can produce backscatter of turbulence kinetic energy (TKE) and, importantly, turbulence potential energy (TPE). The modeled backscatter reduces entrainment at the cloud top and, meanwhile, strengthens resolved turbulence through preserving TKE and TPE, resulting in a realistic boundary layer with an adequate amount of cloud water and vertically coupled turbulent eddies. Additional simulations are performed in the terra incognita, when the grid spacing of a simulation becomes comparable to the size of the most energetic eddies. With 20-m vertical and 1-km horizontal grid spacings, simulations using DRM provide a reasonable representation of bulk properties of the stratocumulus-capped boundary layer.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiaoming Shi, shixm@berkeley.edu
Save
  • Bardina, J., J. H. Ferziger, and W. C. Reynolds, 1983: Improved turbulence models based on large eddy simulation of homogeneous, incompressible, turbulent flows. Stanford University Dept. of Mechanical Engineering Tech. Rep. TF-19, 175 pp.

  • Basu, S., and F. Porté-Agel, 2006: Large-eddy simulation of stably stratified atmospheric boundary layer turbulence: A scale-dependent dynamic modeling approach. J. Atmos. Sci., 63, 20742091, https://doi.org/10.1175/JAS3734.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borges, R., M. Carmona, B. Costa, and W. S. Don, 2008: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys., 227, 31913211, https://doi.org/10.1016/j.jcp.2007.11.038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., 2015: Insights into low-latitude cloud feedbacks from high-resolution models. Philos. Trans. Roy. Soc. London, 373A, 20140415, https://doi.org/10.1098/rsta.2014.0415.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and P. N. Blossey, 2014: Low cloud reduction in a greenhouse-warmed climate: Results from Lagrangian LES of a subtropical marine cloudiness transition. J. Adv. Model. Earth Syst., 6, 91114, https://doi.org/10.1002/2013MS000250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and Coauthors, 1999: An intercomparison of radiatively driven entrainment and turbulence in a smoke cloud, as simulated by different numerical models. Quart. J. Roy. Meteor. Soc., 125, 391423, https://doi.org/10.1002/qj.49712555402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, A. R., J. Hobson, and N. Wood, 2001: Large-eddy simulation of neutral turbulent flow over rough sinusoidal ridges. Bound.-Layer Meteor., 98, 411441, https://doi.org/10.1023/A:1018703209408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and R. Rotunno, 2009: The maximum intensity of tropical cyclones in axisymmetric numerical model simulations. Mon. Wea. Rev., 137, 17701789, https://doi.org/10.1175/2008MWR2709.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carati, D., G. S. Winckelmans, and H. Jeanmart, 2001: On the modelling of the subgrid-scale and filtered-scale stress tensors in large-eddy simulation. J. Fluid Mech., 441, 119138, https://doi.org/10.1017/S0022112001004773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, A., and K.-M. Xu, 2008: Simulation of boundary-layer cumulus and stratocumulus clouds using a cloud-resolving model with low- and third-order turbulence closures. J. Meteor. Soc. Japan, 86A, 6786, https://doi.org/10.2151/jmsj.86A.67.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, A., K.-M. Xu, and B. Stevens, 2010: Effects of resolution on the simulation of boundary-layer clouds and the partition of kinetic energy to subgrid scales. J. Adv. Model. Earth Syst., 2 (1), https://doi.org/10.3894/JAMES.2010.2.3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chow, F. K., 2004: Subfilter-scale turbulence modeling for large-eddy simulation of the atmospheric boundary layer over complex terrain. Ph.D. dissertation, Stanford University, 339 pp.

  • Chow, F. K., and P. Moin, 2003: A further study of numerical errors in large-eddy simulations. J. Comput. Phys., 184, 366380, https://doi.org/10.1016/S0021-9991(02)00020-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chow, F. K., R. L. Street, M. Xue, and J. H. Ferziger, 2005: Explicit filtering and reconstruction turbulence modeling for large-eddy simulation of neutral boundary layer flow. J. Atmos. Sci., 62, 20582077, https://doi.org/10.1175/JAS3456.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Computational and Information Systems Laboratory, 2012: Yellowstone: IBM iDataPlex System. National Center for Atmospheric Research, http://n2t.net/ark:/85065/d7wd3xhc.

  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527, https://doi.org/10.1007/BF00119502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Lozar, A., and J. P. Mellado, 2015: Mixing driven by radiative and evaporative cooling at the stratocumulus top. J. Atmos. Sci., 72, 46814700, https://doi.org/10.1175/JAS-D-15-0087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Roode, S. R., P. G. Duynkerke, and H. J. Jonker, 2004: Large-eddy simulation: How large is large enough? J. Atmos. Sci., 61, 403421, https://doi.org/10.1175/1520-0469(2004)061<0403:LSHLIL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dufresne, J.-L., and S. Bony, 2008: An assessment of the primary sources of spread of global warming estimates from coupled atmosphere–ocean models. J. Climate, 21, 51355144, https://doi.org/10.1175/2008JCLI2239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gullbrand, J., and F. K. Chow, 2003: The effect of numerical errors and turbulence models in large-eddy simulations of channel flow, with and without explicit filtering. J. Fluid Mech., 495, 323341, https://doi.org/10.1017/S0022112003006268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, P. C., 1992: Numerical tools for analysis and solution of Fredholm integral equations of the first kind. Inverse Probl., 8, 849872, https://doi.org/10.1088/0266-5611/8/6/005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C. R., C. S. Bretherton, and P. N. Blossey, 2014: Fast stratocumulus time scale in mixed layer model and large eddy simulation. J. Adv. Model. Earth Syst., 6, 206222, https://doi.org/10.1002/2013MS000289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katopodes, F. V., R. L. Street, and J. H. Ferziger, 2000: A theory for the subfilter-scale model in large-eddy simulation. Stanford University Environmental Fluid Mechanics Laboratory Tech. Rep. 2000-K1, 22 pp.

  • Kirkpatrick, M. P., A. S. Ackerman, D. E. Stevens, and N. N. Mansour, 2006: On the application of the dynamic Smagorinsky model to large-eddy simulations of the cloud-topped atmospheric boundary layer. J. Atmos. Sci., 63, 526546, https://doi.org/10.1175/JAS3651.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, V. E., D. P. Schanen, M. Wang, M. Ovchinnikov, and S. Ghan, 2012: PDF parameterization of boundary layer clouds in models with horizontal grid spacings from 2 to 16 km. Mon. Wea. Rev., 140, 285306, https://doi.org/10.1175/MWR-D-10-05059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leslie, D. C., and G. L. Quarini, 1979: The application of turbulence theory to the formulation of subgrid modelling procedures. J. Fluid Mech., 91, 6591, https://doi.org/10.1017/S0022112079000045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, P. J., 1985: A numerical study of cloud streets in the planetary boundary layer. Bound.-Layer Meteor., 32, 281304, https://doi.org/10.1007/BF00121884.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, P. J., and D. Thomson, 1992: Stochastic backscatter in large-eddy simulations of boundary layers. J. Fluid Mech., 242, 5178, https://doi.org/10.1017/S0022112092002271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matheou, G., and D. Chung, 2014: Large-eddy simulation of stratified turbulence. Part II: Application of the stretched-vortex model to the atmospheric boundary layer. J. Atmos. Sci., 71, 44394460, https://doi.org/10.1175/JAS-D-13-0306.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellado, J. P., 2017: Cloud-top entrainment in stratocumulus clouds. Annu. Rev. Fluid Mech., 49, 145169, https://doi.org/10.1146/annurev-fluid-010816-060231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., P. Sullivan, M. Khairoutdinov, and D. Randall, 2010: A mixed scheme for subgrid-scale fluxes in cloud-resolving models. J. Atmos. Sci., 67, 36923705, https://doi.org/10.1175/2010JAS3565.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Neill, J., X.-M. Cai, and R. Kinnersley, 2015: Improvement of a stochastic backscatter model and application to large-eddy simulation of street canyon flow. Quart. J. Roy. Meteor. Soc., 142, 11211132, https://doi.org/10.1002/qj.2715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedersen, J. G., S. P. Malinowski, and W. W. Grabowski, 2016: Resolution and domain-size sensitivity in implicit large-eddy simulation of the stratocumulus-topped boundary layer. J. Adv. Model. Earth Syst., 8, 885903, https://doi.org/10.1002/2015MS000572.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pope, S. B., 2000: Turbulent Flows. Cambridge University Press, 802 pp.

    • Crossref
    • Export Citation
  • Pressel, K. G., S. Mishra, T. Schneider, C. M. Kaul, and Z. Tan, 2017: Numerics and subgrid-scale modeling in large eddy simulations of stratocumulus clouds. J. Adv. Model. Earth Syst., 9, 13421365, https://doi.org/10.1002/2016MS000778.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations: I. The basic experiment. Mon. Wea. Rev., 91, 99164, https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., C.-H. Moeng, and P. P. Sullivan, 1999: Large-eddy simulations of radiatively driven convection: Sensitivities to the representation of small scales. J. Atmos. Sci., 56, 39633984, https://doi.org/10.1175/1520-0469(1999)056<3963:LESORD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2003: On entrainment rates in nocturnal marine stratocumulus. Quart. J. Roy. Meteor. Soc., 129, 34693493, https://doi.org/10.1256/qj.02.202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2005: Evaluation of large-eddy simulations via observations of nocturnal marine stratocumulus. Mon. Wea. Rev., 133, 14431462, https://doi.org/10.1175/MWR2930.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stolz, S., and N. A. Adams, 1999: An approximate deconvolution procedure for large-eddy simulation. Phys. Fluids, 11, 16991701, https://doi.org/10.1063/1.869867.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stolz, S., N. A. Adams, and L. Kleiser, 2001: An approximate deconvolution model for large-eddy simulation with application to incompressible wall-bounded flows. Phys. Fluids, 13, 9971015, https://doi.org/10.1063/1.1350896.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Venayagamoorthy, S. K., and D. D. Stretch, 2010: On the turbulent Prandtl number in homogeneous stably stratified turbulence. J. Fluid Mech., 644, 359369, https://doi.org/10.1017/S002211200999293X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. M., and S. K. Venayagamoorthy, 2015: A shear-based parameterization of turbulent mixing in the stable atmospheric boundary layer. J. Atmos. Sci., 72, 17131726, https://doi.org/10.1175/JAS-D-14-0241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wong, V. C., and D. K. Lilly, 1994: A comparison of two dynamic subgrid closure methods for turbulent thermal convection. Phys. Fluids, 6, 10161023, https://doi.org/10.1063/1.868335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., C. S. Bretherton, H. A. Rand, and D. E. Stevens, 1997: Numerical simulations and a conceptual model of the stratocumulus to trade cumulus transition. J. Atmos. Sci., 54, 168192, https://doi.org/10.1175/1520-0469(1997)054<0168:NSAACM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 2004: Toward numerical modeling in the “terra incognita.” J. Atmos. Sci., 61, 18161826, https://doi.org/10.1175/1520-0469(2004)061<1816:TNMITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, H., and Coauthors, 2015: Modifications to WRF’s dynamical core to improve the treatment of moisture for large-eddy simulations. J. Adv. Model. Earth Syst., 7, 16271642, https://doi.org/10.1002/2015MS000532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zang, Y., R. L. Street, and J. R. Koseff, 1993: A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows. Phys. Fluids, 5, 31863196, https://doi.org/10.1063/1.858675.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., S. A. Klein, K. E. Taylor, T. Andrews, M. J. Webb, J. M. Gregory, and P. M. Forster, 2013: Contributions of different cloud types to feedbacks and rapid adjustments in CMIP5. J. Climate, 26, 50075027, https://doi.org/10.1175/JCLI-D-12-00555.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S. S., T. Elperin, N. Kleeorin, and I. Rogachevskii, 2007: Energy- and flux-budget (EFB) turbulence closure model for stably stratified flows. Part I: Steady-state, homogeneous regimes. Bound.-Layer Meteor., 125, 167191, https://doi.org/10.1007/s10546-007-9189-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 549 167 11
PDF Downloads 492 152 9