Relationships between Electrification and Storm-Scale Properties Based on Idealized Simulations of an Intensifying Hurricane-Like Vortex

Alexandre O. Fierro Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Alexandre O. Fierro in
Current site
Google Scholar
PubMed
Close
and
Edward R. Mansell NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Edward R. Mansell in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study investigates relationships between storm-scale properties and the electrification and lightning of two simulations of an intensifying idealized tropical cyclone (TC) using the cloud-resolving Collaborative Model for Multiscale Atmospheric Simulation (COMMAS). To produce an intensifying storm, an initial weak TC is subjected to a linear increase in sea surface temperature.

As the TC intensifies, lightning flash rates increase in both the inner core (r ≤ 100 km) and outer region (100 < r ≤ 300 km). As time progresses, lightning in the outer region gradually decreases, while the inner-core lightning remains relatively steady. Bootstrapped correlation statistics using 1000 random samples between the pressure trace and time series of lightning rates shows a statistically significant negative correlation between inner-core lightning and TC intensification. Lightning rates in the outer bands were found to lag minimum surface pressure by 12 h.

The increases in lightning in both the inner core and outer region coincided well with increases in 0.5 g kg−1 graupel and 5 m s−1 updraft volumes in each respective region. Correlation statistics with selected kinematic and microphysical variables known to be associated with lightning in thunderstorms, such as the ice water path, integrated updraft volume, and graupel volume, revealed that their increase in the inner core indicated an ongoing deepening, similar to the lightning. Trends in these proxy variables in the outer bands were also found to lag TC intensification by 12 h.

Overall, the best linear relationships with lightning in either the inner core or the outer region were obtained with the 0.5 g kg−1 graupel volume and total graupel mass.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alexandre O. Fierro, alex.fierro@noaa.gov

Abstract

This study investigates relationships between storm-scale properties and the electrification and lightning of two simulations of an intensifying idealized tropical cyclone (TC) using the cloud-resolving Collaborative Model for Multiscale Atmospheric Simulation (COMMAS). To produce an intensifying storm, an initial weak TC is subjected to a linear increase in sea surface temperature.

As the TC intensifies, lightning flash rates increase in both the inner core (r ≤ 100 km) and outer region (100 < r ≤ 300 km). As time progresses, lightning in the outer region gradually decreases, while the inner-core lightning remains relatively steady. Bootstrapped correlation statistics using 1000 random samples between the pressure trace and time series of lightning rates shows a statistically significant negative correlation between inner-core lightning and TC intensification. Lightning rates in the outer bands were found to lag minimum surface pressure by 12 h.

The increases in lightning in both the inner core and outer region coincided well with increases in 0.5 g kg−1 graupel and 5 m s−1 updraft volumes in each respective region. Correlation statistics with selected kinematic and microphysical variables known to be associated with lightning in thunderstorms, such as the ice water path, integrated updraft volume, and graupel volume, revealed that their increase in the inner core indicated an ongoing deepening, similar to the lightning. Trends in these proxy variables in the outer bands were also found to lag TC intensification by 12 h.

Overall, the best linear relationships with lightning in either the inner core or the outer region were obtained with the 0.5 g kg−1 graupel volume and total graupel mass.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alexandre O. Fierro, alex.fierro@noaa.gov
Save
  • Abarca, S. F., K. L. Corbosiero, and D. Vollaro, 2011: The World Wide Lightning Location Network and convective activity in tropical cyclones. Mon. Wea. Rev., 139, 175191, https://doi.org/10.1175/2010MWR3383.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., 2003: Hot towers and hurricanes: Early observations, theories, and models. Cloud Systems, Hurricanes, and the Tropical Rainfall Measuring Mission (TRMM)—A Tribute to Dr. Joanne Simpson, Meteor. Monogr., No. 40, Amer. Meteor. Soc., 139–148, https://doi.org/10.1175/0065-9401(2003)029<0139:CHTAHE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Black, R. A., and J. Hallett, 1999: Electrification of the hurricane. J. Atmos. Sci., 56, 20042028, https://doi.org/10.1175/1520-0469(1999)056<2004:EOTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boccippio, D. J., K. L. Cummins, H. J. Christian, and S. J. Goodman, 2001: Combined satellite- and surface-based estimation of the intracloud–cloud-to-ground lightning ratio over the continental United States. Mon. Wea. Rev., 129, 108122, https://doi.org/10.1175/1520-0493(2001)129,0108:CSASBE.2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bovalo, C., C. Barthe, N. Yu, and N. Bègue, 2014: Lightning activity within tropical cyclones in the south west Indian Ocean. J. Geophys. Res. Atmos., 119, 82318244, https://doi.org/10.1002/2014JD021651.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, I. M., C. P. R. Saunders, R. P. Mitzeva, and S. L. Peck, 1997: The effect on thunderstorm charging of the rate of rime accretion by graupel. Atmos. Res., 43, 277295, https://doi.org/10.1016/S0169-8095(96)00043-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., and E. J. Zipser, 2002: Reflectivity, ice scattering, and lightning characteristics of hurricane eyewalls and rainbands. Part II: Intercomparison of observations. Mon. Wea. Rev., 130, 785801, https://doi.org/10.1175/1520-0493(2002)130<0785:RISALC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., E. J. Zipser, and S. W. Nesbitt, 2002: Reflectivity, ice scattering, and lightning characteristics of hurricane eyewalls and rainbands. Part I: Quantitative description. Mon. Wea. Rev., 130, 769784, https://doi.org/10.1175/1520-0493(2002)130<0769:RISALC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., D. J. Stensrud, and L. J. Wicker, 2006: Effects of upper-level shear on the structure and maintenance of strong quasi-linear mesoscale convective systems. J. Atmos. Sci., 63, 12311252, https://doi.org/10.1175/JAS3681.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., R. T. DeMaria, J. A. Knaff, and D. Molenar, 2012: Tropical cyclone lightning and rapid intensity change. Mon. Wea. Rev., 140, 18281842, https://doi.org/10.1175/MWR-D-11-00236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dendy, J. E., Jr., 1987: Two multigrid methods for three-dimensional problems with discontinuous and anisotropic coefficients. SIAM J. Sci. Stat. Comput., 8, 673685, https://doi.org/10.1137/0908059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dendy, J. E., Jr., and J. D. Moulton, 2010: Black box multigrid with coarsening by a factor of three. Numer. Linear Algebra Appl., 17, 577598, https://doi.org/10.1002/nla.705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., and J. M. Reisner, 2011: High-resolution simulation of the electrification and lightning of Hurricane Rita during the period of rapid intensification. J. Atmos. Sci., 68, 477494, https://doi.org/10.1175/2010JAS3659.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., and E. R. Mansell, 2017: Electrification and lightning in idealized simulations of a hurricane-like vortex subject to wind shear and sea surface temperature cooling. J. Atmos. Sci., 74, 20232041, https://doi.org/10.1175/JAS-D-16-0270.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., M. S. Gilmore, E. R. Mansell, L. J. Wicker, and J. M. Straka, 2006: Electrification and lightning in an idealized boundary-crossing supercell simulation of 2 June 1995. Mon. Wea. Rev., 134, 31493172, https://doi.org/10.1175/MWR3231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., L. M. Leslie, E. R. Mansell, J. M. Straka, D. R. MacGorman, and C. Ziegler, 2007: A high-resolution simulation of the microphysics and electrification in an idealized hurricane-like vortex. Meteor. Atmos. Phys., 98, 1333, https://doi.org/10.1007/s00703-006-0237-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., X.-M. Shao, J. M. Reisner, J. D. Harlin, and T. Hamlin, 2011: Evolution of eyewall convective events as indicated by intracloud and cloud-to-ground lightning activity during the rapid intensification of Hurricanes Rita and Katrina. Mon. Wea. Rev., 139, 14921504, https://doi.org/10.1175/2010MWR3532.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., E. R. Mansell, C. Ziegler, and D. R. MacGorman, 2013: The implementation of an explicit charging and discharge lightning scheme within the WRF-ARW Model: Benchmark simulations with a continental squall line and a tropical cyclone. Mon. Wea. Rev., 141, 23902415, https://doi.org/10.1175/MWR-D-12-00278.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., E. R. Mansell, D. R. MacGorman, and C. Ziegler, 2015: Explicitly simulated electrification and lightning within a tropical cyclone based on the environment of Hurricane Isaac (2012). J. Atmos. Sci., 72, 41674193, https://doi.org/10.1175/JAS-D-14-0374.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., and Coauthors, 2013: The GOES-R Geostationary Lightning Mapper (GLM). Atmos. Res., 125–126, 3449, https://doi.org/10.1016/j.atmosres.2013.01.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guimond, S. R., G. M. Heymsfield, and F. J. Turk, 2010: Multiscale observations of Hurricane Dennis (2005): The effects of hot towers on rapid intensification. J. Atmos. Sci., 67, 633654, https://doi.org/10.1175/2009JAS3119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guimond, S. R., G. M. Heymsfield, P. D. Reasor, and A. C. Didlake Jr., 2016: The rapid intensification of Hurricane Karl (2010): New remote sensing observations of convective bursts from the Global Hawk platform. J. Atmos. Sci., 73, 36173639, https://doi.org/10.1175/JAS-D-16-0026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gurka, J. J., T. A. Schmit, T. M. Renkevens, M. M. Gunshor, and J. Li, 2006: 2006 update on baseline instruments for GOES-R series. Atmospheric and Environmental Remote Sensing Data Processing and Utilization II: Perspective on Calibration/Validation Initiatives and Strategies, A. H. L. Huang and H. J. Bloom, Eds., Society of Photo-Optical Instrumentation Engineers (SPIE Proceedings, Vol. 6301), 63010H, https://doi.org/10.1117/12.683701.

    • Crossref
    • Export Citation
  • Hazelton, A. T., R. E. Hart, and R. F. Rogers, 2017: Analyzing simulated convective bursts in two Atlantic hurricanes. Part II: Intensity change due to bursts. Mon. Wea. Rev., 145, 30953117, https://doi.org/10.1175/MWR-D-16-0268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., M. T. Montgomery, and C. A. Davis, 2004: The role of “vortical” hot towers in the formation of Tropical Cyclone Diana (1984). J. Atmos. Sci., 61, 12091232, https://doi.org/10.1175/1520-0469(2004)061<1209:TROVHT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., M. DeMaria, and J. A. Knaff, 2010: A revised tropical cyclone rapid intensification index for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 25, 220241, https://doi.org/10.1175/2009WAF2222280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelley, O. A., J. Stout, and J. B. Halverson, 2004: Tall precipitation cells in tropical cyclone eyewalls are associated with tropical cyclone intensification. Geophys. Res. Lett., 31, L24112, https://doi.org/10.1029/2004GL021616.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 10701096, https://doi.org/10.1175/1520-0469(1978)035<1070:TSOTDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuhlman, K. M., C. L. Ziegler, E. R. Mansell, D. R. MacGorman, and J. M. Straka, 2006: Numerically simulated electrification and lightning of the 29 June 2000 STEPS supercell storm. Mon. Wea. Rev., 134, 27342757, https://doi.org/10.1175/MWR3217.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, T. J., and S. A. Rutledge, 2002: Relationships between convective storm kinematics, precipitation, and lightning. Mon. Wea. Rev., 130, 24922506, https://doi.org/10.1175/1520-0493(2002)130<2492:RBCSKP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyons, W. A., M. G. Venne, P. G. Black, and R. C. Gentry, 1989: Hurricane lightning: A new diagnostic tool for tropical storm forecasting? Preprints, 18th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., 113–114.

  • MacGorman, D. R., and W. D. Rust, 1998: The Electrical Nature of Storms. Oxford University Press, 422 pp.

  • MacGorman, D. R., D. W. Burgess, V. Mazur, W. D. Rust, W. L. Taylor, and B. C. Johnson, 1989: Lightning rates relative to tornadic storm evolution on 22 May 1981. J. Atmos. Sci., 46, 221251, https://doi.org/10.1175/1520-0469(1989)046<0221:LRRTTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., and C. L. Ziegler, 2013: Aerosol effects on simulated storm electrification and precipitation in a two-moment bulk microphysics model. J. Atmos. Sci., 70, 20322050, https://doi.org/10.1175/JAS-D-12-0264.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., D. R. MacGorman, C. L. Ziegler, and J. M. Straka, 2002: Simulated three-dimensional branched lightning in a numerical thunderstorm model. J. Geophys. Res., 107, 4075, https://doi.org/10.1029/2000JD000244.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., D. R. MacGorman, C. L. Ziegler, and J. M. Straka, 2005: Charge structure and lightning sensitivity in a simulated multicell storm. J. Geophys. Res., 110, D12101, https://doi.org/10.1029/2004JD005287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., C. L. Ziegler, and C. Bruning, 2010: Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., 67, 171194, https://doi.org/10.1175/2009JAS2965.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., P. K. Moore, V. P. Idone, R. W. Henderson, and A. B. Saljoughy, 1994: Cloud-to-ground lightning in Hurricane Andrew. J. Geophys. Res., 99, 16 66516 676, https://doi.org/10.1029/94JD00722.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., P. K. Moore, and V. P. Idone, 1999: Convective structure of hurricanes as revealed by lightning locations. Mon. Wea. Rev., 127, 520534, https://doi.org/10.1175/1520-0493(1999)127<0520:CSOHAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., M. E. Nicholls, T. A. Cram, and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355386, https://doi.org/10.1175/JAS3604.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., Y. Moon, and D. P. Stern, 2007: Tropical cyclone intensification from asymmetric convection: Energetics and efficiency. J. Atmos. Sci., 64, 33773405, https://doi.org/10.1175/JAS3988.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., J. Christian, and S. A. Rutledge, 2005: TRMM observations of the global relationship between ice water content and lightning. Geophys. Res. Lett., 32, L14819, https://doi.org/10.1029/2005GL023236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., Jr., and C. W. Landsea, 1998: Normalized hurricane damages in the United States: 1925–1995. Wea. Forecasting, 13, 621631, https://doi.org/10.1175/1520-0434(1998)013<0621:NHDITU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, C., M. Asfur, and Y. Yair, 2009: Maximum hurricane intensity preceded by increase in lightning frequency. Nat. Geosci., 2, 329332, https://doi.org/10.1038/ngeo477.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., P. Reasor, and S. Lorsolo, 2013: Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones. Mon. Wea. Rev., 141, 29702991, https://doi.org/10.1175/MWR-D-12-00357.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., J. A. Zhang, J. Zawislak, G. R. Alvey, E. J. Zipser, and H. Jiang, 2016: Observations of the structure and evolution of Hurricane Edouard (2014) during intensity change. Part II: Kinematic structure and the distribution of deep convection. Mon. Wea. Rev., 144, 33553376, https://doi.org/10.1175/MWR-D-16-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and K. A. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542561, https://doi.org/10.1175/1520-0469(1987)044<0542:AAITFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samsury, C. E., and R. E. Orville, 1994: Cloud-to-ground lightning in tropical cyclones: A study of Hurricanes Hugo (1989) and Jerry (1989). Mon. Wea. Rev., 122, 18871896, https://doi.org/10.1175/1520-0493(1994)122<1887:CTGLIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., and L. S. Peck, 1998: Laboratory studies of the influence of the rime accretion rate on charge transfer during crystal/graupel collisions. J. Geophys. Res., 103, 13 94913 956, https://doi.org/10.1029/97JD02644.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, S., C. Kemfert, and P. Höppe, 2009: Tropical cyclone losses in the USA and the impact of climate change—A trend analysis based on data from a new approach to adjusting storm losses. Environ. Impact Assess. Rev., 29, 359369, https://doi.org/10.1016/j.eiar.2009.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, C. J., W. A. Petersen, and L. D. Carey, 2011: Lightning and severe weather: A comparison between total and cloud-to-ground lightning trends. Wea. Forecasting., 26, 744755, https://doi.org/10.1175/WAF-D-10-05026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shao, X. M., and Coauthors, 2005: Katrina and Rita were lit up with lightning. Eos, Trans. Amer. Geophys. Union, 86, 398, https://doi.org/10.1029/2005EO420004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and M. T. Montgomery, 2015: Toward clarity on understanding tropical cyclone intensification. J. Atmos. Sci., 72, 30203031, https://doi.org/10.1175/JAS-D-15-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Squires, K., and S. Businger, 2008: The morphology of eyewall lightning outbreaks in two category 5 hurricanes. Mon. Wea. Rev., 136, 17061726, https://doi.org/10.1175/2007MWR2150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevenson, S. N., K. L. Corbosiero, and S. F. Abarca, 2016: Lightning in eastern North Pacific tropical cyclones: A comparison to the North Atlantic. Mon. Wea. Rev., 144, 225239, https://doi.org/10.1175/MWR-D-15-0276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, J. N., N. Solorzano, S. A. Cummer, and R. H. Holzworth, 2010: Polarity and energetics of inner core lightning in three intense North Atlantic hurricanes. J. Geophys. Res., 115, A00E15, https://doi.org/10.1029/2009JA014777.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and R. B. Wilhelmson, 1995: Simulation and analysis of tornado development and decay within a three-dimensional supercell thunderstorm. J. Atmos. Sci., 52, 26752703, https://doi.org/10.1175/1520-0469(1995)052<2675:SAAOTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wiens, K. C., S. A. Rutledge, and S. A. Tessendorf, 2005: The 29 June 2000 supercell observed during STEPS. Part II: Lightning and charge structure. J. Atmos. Sci., 62, 41514177, https://doi.org/10.1175/JAS3615.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, E., and N. Renno, 1993: An analysis of the conditional instability of the tropical atmosphere. Mon. Wea. Rev., 121, 2136, https://doi.org/10.1175/1520-0493(1993)121<0021:AAOTCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., 1985: Retrieval of thermal and microphysical variables in observed convective storms. Part I: Model development and preliminary testing. J. Atmos. Sci., 42, 14871509, https://doi.org/10.1175/1520-0469(1985)042<1487:ROTAMV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., D. R. MacGorman, J. E. Dye, and P. S. Ray, 1991: A model evaluation of noninductive graupel-ice charging in the early electrification of a mountain thunderstorm. J. Geophys. Res., 96, 12 83312 855, https://doi.org/10.1029/91JD01246.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 305 97 4
PDF Downloads 244 66 3