Calculating State-Dependent Noise in a Linear Inverse Model Framework

Cristian Martinez-Villalobos Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, Wisconsin, and Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Cristian Martinez-Villalobos in
Current site
Google Scholar
PubMed
Close
,
Daniel J. Vimont Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Daniel J. Vimont in
Current site
Google Scholar
PubMed
Close
,
Cécile Penland Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Cécile Penland in
Current site
Google Scholar
PubMed
Close
,
Matthew Newman Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Matthew Newman in
Current site
Google Scholar
PubMed
Close
, and
J. David Neelin Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by J. David Neelin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The most commonly used version of a linear inverse model (LIM) is forced by state-independent noise. Although having several desirable qualities, this formulation can only generate long-term Gaussian statistics. LIM-like systems forced by correlated additive–multiplicative (CAM) noise have been shown to generate deviations from Gaussianity, but parameter estimation methods are only known in the univariate case, limiting their use for the study of coupled variability. This paper presents a methodology to calculate the parameters of the simplest multivariate LIM extension that can generate long-term deviations from Gaussianity. This model (CAM-LIM) consists of a linear deterministic part forced by a diagonal CAM noise formulation, plus an independent additive noise term. This allows for the possibility of representing asymmetric distributions with heavier- or lighter-than-Gaussian tails. The usefulness of this methodology is illustrated in a locally coupled two-variable ocean–atmosphere model of midlatitude variability. Here, a CAM-LIM is calculated from ocean weather station data. Although the time-resolved dynamics is very close to linear at a time scale of a couple of days, significant deviations from Gaussianity are found. In particular, individual probability density functions are skewed with both heavy and light tails. It is shown that these deviations from Gaussianity are well accounted for by the CAM-LIM formulation, without invoking nonlinearity in the time-resolved operator. Estimation methods using knowledge of the CAM-LIM statistical constraints provide robust estimation of the parameters with data lengths typical of geophysical time series, for example, 31 winters for the ocean weather station here.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-17-0235.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher’s Note: This article was revised on 29 January 2018 to include a funding source in the Acknowledgments that was missing when originally published.

Corresponding author: Cristian Martinez-Villalobos, cmartinezvil@atmos.ucla.edu

Abstract

The most commonly used version of a linear inverse model (LIM) is forced by state-independent noise. Although having several desirable qualities, this formulation can only generate long-term Gaussian statistics. LIM-like systems forced by correlated additive–multiplicative (CAM) noise have been shown to generate deviations from Gaussianity, but parameter estimation methods are only known in the univariate case, limiting their use for the study of coupled variability. This paper presents a methodology to calculate the parameters of the simplest multivariate LIM extension that can generate long-term deviations from Gaussianity. This model (CAM-LIM) consists of a linear deterministic part forced by a diagonal CAM noise formulation, plus an independent additive noise term. This allows for the possibility of representing asymmetric distributions with heavier- or lighter-than-Gaussian tails. The usefulness of this methodology is illustrated in a locally coupled two-variable ocean–atmosphere model of midlatitude variability. Here, a CAM-LIM is calculated from ocean weather station data. Although the time-resolved dynamics is very close to linear at a time scale of a couple of days, significant deviations from Gaussianity are found. In particular, individual probability density functions are skewed with both heavy and light tails. It is shown that these deviations from Gaussianity are well accounted for by the CAM-LIM formulation, without invoking nonlinearity in the time-resolved operator. Estimation methods using knowledge of the CAM-LIM statistical constraints provide robust estimation of the parameters with data lengths typical of geophysical time series, for example, 31 winters for the ocean weather station here.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-17-0235.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher’s Note: This article was revised on 29 January 2018 to include a funding source in the Acknowledgments that was missing when originally published.

Corresponding author: Cristian Martinez-Villalobos, cmartinezvil@atmos.ucla.edu

Supplementary Materials

    • Supplemental Materials (PDF 216.43 KB)
Save
  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N.-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., L. Matrosova, C. Penland, J. D. Scott, and P. Chang, 2008: Forecasting Pacific SSTs: Linear inverse model predictions of the PDO. J. Climate, 21, 385402, https://doi.org/10.1175/2007JCLI1849.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barsugli, J. J., and D. S. Battisti, 1998: The basic effects of atmosphere–ocean thermal coupling on midlatitude variability. J. Atmos. Sci., 55, 477493, https://doi.org/10.1175/1520-0469(1998)055<0477:TBEOAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berner, J., and Coauthors, 2017: Stochastic parameterization: Toward a new view of weather and climate models. Bull. Amer. Meteor. Soc., 98, 565588, https://doi.org/10.1175/BAMS-D-15-00268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borges, M. D., and D. L. Hartmann, 1992: Barotropic instability and optimal perturbations of observed nonzonal flows. J. Atmos. Sci., 49, 335354, https://doi.org/10.1175/1520-0469(1992)049<0335:BIAOPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bourlioux, A., and A. J. Majda, 2002: Elementary models with probability distribution function intermittency for passive scalars with a mean gradient. Phys. Fluids, 14, 881897, https://doi.org/10.1063/1.1430736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowman, A. W., and A. Azzalini, 1997: Applied Smoothing Techniques for Data Analysis: The Kernel Approach with S-Plus Illustrations. Oxford Statistical Science Series, Vol. 18, Clarendon Press, 193 pp., https://searchworks.stanford.edu/view/3749403.

  • Boyd, J. P., 1983: The continuous spectrum of linear Couette flow with the beta effect. J. Atmos. Sci., 40, 23042308, https://doi.org/10.1175/1520-0469(1983)040<2304:TCSOLC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., and P. D. Sardeshmukh, 2015: Optimal precursors of different types of ENSO events. Geophys. Res. Lett., 42, 99529960, https://doi.org/10.1002/2015GL066171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavanaugh, N. R., and S. S. P. Shen, 2014: Northern Hemisphere climatology and trends of statistical moments documented from GHCN-Daily surface air temperature station data from 1950 to 2010. J. Climate, 27, 53965410, https://doi.org/10.1175/JCLI-D-13-00470.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, C., M. A. Cane, N. Henderson, D. E. Lee, D. Chapman, D. Kondrashov, and M. D. Chekroun, 2016: Diversity, nonlinearity, seasonality, and memory effect in ENSO simulation and prediction using empirical model reduction. J. Climate, 29, 18091830, https://doi.org/10.1175/JCLI-D-15-0372.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DelSole, T., and A. Y. Hou, 1999: Empirical stochastic models for the dominant climate statistics of a general circulation model. J. Atmos. Sci., 56, 34363456, https://doi.org/10.1175/1520-0469(1999)056<3436:ESMFTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diaz, H. F., C. S. Ramage, S. D. Woodruff, and T. S. Parler, 1987: Climatic summaries of ocean weather stations. NOAA Rep., 26 pp., ftp://ftp.library.noaa.gov/noaa_documents.lib/OAR/ERL_ARL/Diaz1987.pdf.

  • Dinsmore, R., 1996: Alpha, Bravo, Charlie...: Ocean weather ships 1940-1980. Oceanus, 39, 910, http://www.whoi.edu/oceanus/feature/alpha-bravo-charlie.

    • Search Google Scholar
    • Export Citation
  • Epanechnikov, V. A., 1969: Non-parametric estimation of a multivariate probability density. Theory Probab. Its Appl., 14, 153158, https://doi.org/10.1137/1114019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ewald, B., and C. Penland, 2009: Numerical generation of stochastic differential equations in climate models. Handbook of Numerical Analysis: Computational Methods for the Atmosphere and the Oceans, R. Temam and J. Tribbia, Eds., Elsevier, 279–306.

    • Crossref
    • Export Citation
  • Farrell, B., 1988: Optimal excitation of neutral Rossby waves. J. Atmos. Sci., 45, 163172, https://doi.org/10.1175/1520-0469(1988)045<0163:OEONRW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fokker, A. D., 1914: Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld. Ann. Phys., 348, 810820, https://doi.org/10.1002/andp.19143480507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., and K. Hasselmann, 1977: Stochastic climate models, part II: Application to sea-surface temperature anomalies and thermocline variability. Tellus, 29, 289305, https://doi.org/10.3402/tellusa.v29i4.11362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franzke, C. L. E., 2017: Extremes in dynamic-stochastic systems. Chaos, 27, 012101, https://doi.org/10.1063/1.4973541.

  • Franzke, C. L. E., T. J. O’Kane, J. Berner, P. D. Williams, and V. Lucarini, 2015: Stochastic climate theory and modeling. Wiley Interdiscip. Rev.: Climate Change, 6, 6378, https://doi.org/10.1002/wcc.318.

    • Search Google Scholar
    • Export Citation
  • Gardiner, C. W., 2010: Stochastic Methods: A Handbook for the Natural and Social Sciences. Springer Series in Synergetics, Vol. 13, Springer, 447 pp.

  • Ghil, M., and Coauthors, 2002: Advanced spectral methods for climatic time series. Rev. Geophys., 40, 1003, https://doi.org/10.1029/2000RG000092.

  • Gritsun, A., G. Branstator, and A. Majda, 2008: Climate response of linear and quadratic functionals using the fluctuation—Dissipation theorem. J. Atmos. Sci., 65, 28242841, https://doi.org/10.1175/2007JAS2496.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, A., and S. Manabe, 1997: Can local linear stochastic theory explain sea surface temperature and salinity variability? Climate Dyn., 13, 167180, https://doi.org/10.1007/s003820050158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huybers, P., K. A. McKinnon, A. Rhines, and M. Tingley, 2014: U.S. daily temperatures: The meaning of extremes in the context of nonnormality. J. Climate, 27, 73687384, https://doi.org/10.1175/JCLI-D-14-00216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ito, K., 1951: On stochastic differential equations. Memo. Amer. Math. Soc., 4, 151.

  • Jin, F.-F., L. Lin, A. Timmermann, and J. Zhao, 2007: Ensemble-mean dynamics of the ENSO recharge oscillator under state-dependent stochastic forcing. Geophys. Res. Lett., 34, L03807, https://doi.org/10.1029/2006GL027372.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, S. D., D. S. Battisti, and E. S. Sarachik, 2000: Empirically derived Markov models and prediction of tropical Pacific sea surface temperature anomalies. J. Climate, 13, 317, https://doi.org/10.1175/1520-0442(2000)013<0003:EDMMAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, K.-Y., and G. R. North, 1992: Seasonal cycle and second-moment statistics of a simple coupled climate system. J. Geophys. Res., 97, 20 43720 448, https://doi.org/10.1029/92JD02281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kimoto, M., and M. Ghil, 1993: Multiple flow regimes in the Northern Hemisphere winter. Part I: Methodology and hemispheric regimes. J. Atmos. Sci., 50, 26252644, https://doi.org/10.1175/1520-0469(1993)050<2625:MFRITN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolmogoroff, A., 1931: Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung. Math. Ann., 104, 415458, https://doi.org/10.1007/BF01457949.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kondrashov, D., S. Kravtsov, and M. Ghil, 2006: Empirical mode reduction in a model of extratropical low-frequency variability. J. Atmos. Sci., 63, 18591877, https://doi.org/10.1175/JAS3719.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kravtsov, S., D. Kondrashov, and M. Ghil, 2005: Multilevel regression modeling of nonlinear processes: Derivation and applications to climatic variability. J. Climate, 18, 44044424, https://doi.org/10.1175/JCLI3544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leith, C. E., 1975: Climate response and fluctuation dissipation. J. Atmos. Sci., 32, 20222026, https://doi.org/10.1175/1520-0469(1975)032<2022:CRAFD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levine, A. F. Z., and F. F. Jin, 2017: A simple approach to quantifying the noise–ENSO interaction. Part I: Deducing the state-dependency of the windstress forcing using monthly mean data. Climate Dyn., 48, 118, https://doi.org/10.1007/s00382-015-2748-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loikith, P. C., and J. D. Neelin, 2015: Short-tailed temperature distributions over North America and implications for future changes in extremes. Geophys. Res. Lett., 42, 85778585, https://doi.org/10.1002/2015GL065602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loikith, P. C., B. R. Lintner, J. Kim, H. Lee, J. D. Neelin, and D. E. Waliser, 2013: Classifying reanalysis surface temperature probability density functions (PDFs) over North America with cluster analysis. Geophys. Res. Lett., 40, 37103714, https://doi.org/10.1002/grl.50688.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luxford, F., and T. Woollings, 2012: A simple kinematic source of skewness in atmospheric flow fields. J. Atmos. Sci., 69, 578590, https://doi.org/10.1175/JAS-D-11-089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Majda, A. J., C. Franzke, and B. Khouider, 2008: An applied mathematics perspective on stochastic modelling for climate. Philos. Trans. Roy. Soc., 366A, 24272453, https://doi.org/10.1098/rsta.2008.0012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Majda, A. J., C. Franzke, and D. Crommelin, 2009: Normal forms for reduced stochastic climate models. Proc. Natl. Acad. Sci. USA, 106, 36493653, https://doi.org/10.1073/pnas.0900173106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martinez-Villalobos, C., 2016: Deterministic and stochastic models of tropical climate variability. Ph.D. thesis, University of Wisconsin–Madison, 183 pp., https://dept.atmos.ucla.edu/cristian_martinez_villalobos/publications/deterministic-and-stochastic-models-tropical-climate.

  • Martinez-Villalobos, C., and D. J. Vimont, 2017: An analytical framework for understanding tropical meridional modes. J. Climate, 30, 33033323, https://doi.org/10.1175/JCLI-D-16-0450.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., 2004: A simple model for the skewness of global sea surface winds. J. Atmos. Sci., 61, 20372049, https://doi.org/10.1175/1520-0469(2004)061<2037:ASMFTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, A. M., and R. Kleeman, 1999: The nonnormal nature of El Niño and intraseasonal variability. J. Climate, 12, 29652982, https://doi.org/10.1175/1520-0442(1999)012<2965:TNNOEN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, D., 1987: Bispectra of sea-surface temperature anomalies. J. Phys. Oceanogr., 17, 2636, https://doi.org/10.1175/1520-0485(1987)017<0026:BOSSTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and W. Weng, 1999: Analytical prototypes for ocean–atmosphere interaction at midlatitudes. Part I: Coupled feedbacks as a sea surface temperature dependent stochastic process. J. Climate, 12, 697721, https://doi.org/10.1175/1520-0442(1999)012<0697:APFOAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., B. R. Lintner, B. Tian, Q. Li, L. Zhang, P. K. Patra, M. T. Chahine, and S. N. Stechmann, 2010: Long tails in deep columns of natural and anthropogenic tropospheric tracers. Geophys. Res. Lett., 37, L05804, https://doi.org/10.1029/2009GL041726.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., S. Sahany, S. N. Stechmann, and D. N. Bernstein, 2017: Global warming precipitation accumulation increases above the current-climate cutoff scale. Proc. Natl. Acad. Sci. USA, 114, 12581263, https://doi.org/10.1073/pnas.1615333114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., 2013: An empirical benchmark for decadal forecasts of global surface temperature anomalies. J. Climate, 26, 52605269, https://doi.org/10.1175/JCLI-D-12-00590.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., and P. D. Sardeshmukh, 2017: Are we near the predictability limit of tropical Indo-Pacific sea surface temperatures? Geophys. Res. Lett., 44, 85208529, https://doi.org/10.1002/2017GL074088.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., M. A. Alexander, and J. D. Scott, 2011: An empirical model of tropical ocean dynamics. Climate Dyn., 37, 18231841, https://doi.org/10.1007/s00382-011-1034-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., and Coauthors, 2016: The Pacific decadal oscillation, revisited. J. Climate, 29, 43994427, https://doi.org/10.1175/JCLI-D-15-0508.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • North, G. R., and R. F. Cahalan, 1981: Predictability in a solvable stochastic climate model. J. Atmos. Sci., 38, 504513, https://doi.org/10.1175/1520-0469(1981)038<0504:PIASSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Papanicolaou, G. C., and W. Kohler, 1974: Asymptotic theory of mixing stochastic ordinary differential equations. Commun. Pure Appl. Math., 27, 641668, https://doi.org/10.1002/cpa.3160270503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peavoy, D., C. L. Franzke, and G. O. Roberts, 2015: Systematic physics constrained parameter estimation of stochastic differential equations. Comput. Stat. Data Anal., 83, 182199, https://doi.org/10.1016/j.csda.2014.10.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penland, C., 1996: A stochastic model of IndoPacific sea surface temperature anomalies. Physica D, 98, 534558, https://doi.org/10.1016/0167-2789(96)00124-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penland, C., 2003: A stochastic approach to nonlinear dynamics: A review. Bull. Amer. Meteor. Soc., 84, 925925, https://doi.org/10.1175/BAMS-84-7-Penland.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penland, C., 2007: Stochastic linear models of nonlinear geosystems. Nonlinear Dynamics in Geosciences, A. A. Tsonis and J. B. Elsner, Eds., Springer, 485–515.

    • Crossref
    • Export Citation
  • Penland, C., and L. Matrosova, 1994: A balance condition for stochastic numerical models with application to the El Niño–Southern Oscillation. J. Climate, 7, 13521372, https://doi.org/10.1175/1520-0442(1994)007<1352:ABCFSN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penland, C., and P. D. Sardeshmukh, 1995: The optimal growth of tropical sea surface temperature anomalies. J. Climate, 8, 19992024, https://doi.org/10.1175/1520-0442(1995)008<1999:TOGOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penland, C., and L. Matrosova, 1998: Prediction of tropical Atlantic sea surface temperatures using linear inverse modeling. J. Climate, 11, 483496, https://doi.org/10.1175/1520-0442(1998)011<0483:POTASS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penland, C., and P. D. Sardeshmukh, 2012: Alternative interpretations of power-law distributions found in nature. Chaos, 22, 023119, https://doi.org/10.1063/1.4706504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perez, C. L., A. M. Moore, J. Zavala-Garay, and R. Kleeman, 2005: A comparison of the influence of additive and multiplicative stochastic forcing on a coupled model of ENSO. J. Climate, 18, 50665085, https://doi.org/10.1175/JCLI3596.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perron, M., and P. Sura, 2013: Climatology of non-Gaussian atmospheric statistics. J. Climate, 26, 10631083, https://doi.org/10.1175/JCLI-D-11-00504.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rennert, K. J., and J. M. Wallace, 2009: Cross-frequency coupling, skewness, and blocking in the Northern Hemisphere winter circulation. J. Climate, 22, 56505666, https://doi.org/10.1175/2009JCLI2669.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruff, T. W., and J. D. Neelin, 2012: Long tails in regional surface temperature probability distributions with implications for extremes under global warming. Geophys. Res. Lett., 39, L04704, https://doi.org/10.1029/2011GL050610.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rüemelin, W., 1982: Numerical treatment of stochastic differential equations. SIAM J. Numer. Anal., 19, 604613, https://doi.org/10.1137/0719041.

  • Sardeshmukh, P. D., and P. Sura, 2009: Reconciling non-Gaussian climate statistics with linear dynamics. J. Climate, 22, 11931207, https://doi.org/10.1175/2008JCLI2358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and C. Penland, 2015: Understanding the distinctively skewed and heavy tailed character of atmospheric and oceanic probability distributions. Chaos, 25, 036410, https://doi.org/10.1063/1.4914169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., G. P. Compo, and C. Penland, 2015: Need for caution in interpreting extreme weather statistics. J. Climate, 28, 91669187, https://doi.org/10.1175/JCLI-D-15-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sévellec, F., and A. V. Fedorov, 2017: Predictability and decadal variability of the North Atlantic Ocean state evaluated from a realistic ocean model. J. Climate, 30, 477498, https://doi.org/10.1175/JCLI-D-16-0323.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siegert, S., R. Friedrich, and J. Peinke, 1998: Analysis of data sets of stochastic systems. Phys. Lett., 243A, 275280, https://doi.org/10.1016/S0375-9601(98)00283-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smirnov, D., M. Newman, and M. A. Alexander, 2014: Investigating the role of ocean–atmosphere coupling in the North Pacific Ocean. J. Climate, 27, 592606, https://doi.org/10.1175/JCLI-D-13-00123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, P., K. Ide, and M. Ghil, 1999: Multiple regimes in Northern Hemisphere height fields via mixture model clustering. J. Atmos. Sci., 56, 37043723, https://doi.org/10.1175/1520-0469(1999)056<3704:MRINHH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stechmann, S. N., and J. D. Neelin, 2014: First-passage-time prototypes for precipitation statistics. J. Atmos. Sci., 71, 32693291, https://doi.org/10.1175/JAS-D-13-0268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stefanova, L., P. Sura, and M. Griffin, 2013: Quantifying the non-Gaussianity of wintertime daily maximum and minimum temperatures in the Southeast. J. Climate, 26, 838850, https://doi.org/10.1175/JCLI-D-12-00161.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stratonovich, R. L., 1966: A new representation for stochastic integrals and equations. SIAM J. Control, 4, 362371, https://doi.org/10.1137/0304028.

  • Sura, P., and M. Newman, 2008: The impact of rapid wind variability upon air–sea thermal coupling. J. Climate, 21, 621637, https://doi.org/10.1175/2007JCLI1708.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sura, P., and P. D. Sardeshmukh, 2008: A global view of non-Gaussian SST variability. J. Phys. Oceanogr., 38, 639647, https://doi.org/10.1175/2007JPO3761.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sura, P., and P. D. Sardeshmukh, 2009: A global view of air–sea thermal coupling and related non-Gaussian SST variability. Atmos. Res., 94, 140149, https://doi.org/10.1016/j.atmosres.2008.08.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sura, P., and A. Hannachi, 2015: Perspectives of non-Gaussianity in atmospheric synoptic and low-frequency variability. J. Climate, 28, 50915114, https://doi.org/10.1175/JCLI-D-14-00572.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sura, P., M. Newman, C. Penland, and P. Sardeshmukh, 2005: Multiplicative noise and non-Gaussianity: A paradigm for atmospheric regimes? J. Atmos. Sci., 62, 13911409, https://doi.org/10.1175/JAS3408.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sura, P., M. Newman, and M. A. Alexander, 2006: Daily to decadal sea surface temperature variability driven by state-dependent stochastic heat fluxes. J. Phys. Oceanogr., 36, 19401958, https://doi.org/10.1175/JPO2948.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, C. J., and D. S. Battisti, 2000: A linear stochastic dynamical model of ENSO. Part I: Model development. J. Climate, 13, 28182832, https://doi.org/10.1175/1520-0442(2000)013<2818:ALSDMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermann, A., H. U. Voss, and R. Pasmanter, 2001: Empirical dynamical system modeling of ENSO using nonlinear inverse techniques. J. Phys. Oceanogr., 31, 15791598, https://doi.org/10.1175/1520-0485(2001)031<1579:EDSMOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., 2010: Transient growth of thermodynamically coupled variations in the tropics under an equatorially symmetric mean state. J. Climate, 23, 57715789, https://doi.org/10.1175/2010JCLI3532.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., 2012: Analysis of the Atlantic Meridional Mode using linear inverse modeling: Seasonality and regional influences. J. Climate, 25, 11941212, https://doi.org/10.1175/JCLI-D-11-00012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., M. A. Alexander, and M. Newman, 2014: Optimal growth of central and east Pacific ENSO events. Geophys. Res. Lett., 41, 40274034, https://doi.org/10.1002/2014GL059997.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Storch, H., T. Bruns, I. Fischer-Bruns, and K. Hasselmann, 1988: Principal oscillation pattern analysis of the 30- to 60-day oscillation in general circulation model equatorial troposphere. J. Geophys. Res., 93, 11 02211 036, https://doi.org/10.1029/JD093iD09p11022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilkins, J. E., 1944: A note on skewness and kurtosis. Ann. Math. Stat., 15, 333335, https://doi.org/10.1214/aoms/1177731243.

  • Wu, R., B. P. Kirtman, and K. Pegion, 2006: Local air–sea relationship in observations and model simulations. J. Climate, 19, 49144932, https://doi.org/10.1175/JCLI3904.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zanna, L., 2012: Forecast skill and predictability of observed Atlantic sea surface temperatures. J. Climate, 25, 50475056, https://doi.org/10.1175/JCLI-D-11-00539.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zanna, L., and E. Tziperman, 2005: Nonnormal amplification of the thermohaline circulation. J. Phys. Oceanogr., 35, 15931605, https://doi.org/10.1175/JPO2777.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 792 273 9
PDF Downloads 560 178 4