• Ahmadi-Givi, F., G. C. Graig, and R. S. Plant, 2004: The dynamics of a midlatitude cyclone with very strong latent-heat release. Quart. J. Roy. Meteor. Soc., 130, 295323, https://doi.org/10.1256/qj.02.226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arbogast, P., K. Maynard, and F. Crepin, 2008: Ertel potential vorticity inversion using a digital filter initialization method. Quart. J. Roy. Meteor. Soc., 134, 12871296, https://doi.org/10.1002/qj.283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baxter, M., P. Schumacher, and J. Boustedt, 2011: The use of potential vorticity inversion to evaluate the effect of downstream mesoscale processes. Quart. J. Roy. Meteor. Soc., 137, 179198, https://doi.org/10.1002/qj.730.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Birkett, H. R., and A. J. Thorpe, 1997: Superposing semi-geostrophic potential-vorticity anomalies. Quart. J. Roy. Meteor. Soc., 123, 21572163, https://doi.org/10.1002/qj.49712354318.

    • Search Google Scholar
    • Export Citation
  • Bishop, C., and A. J. Thorpe, 1994: Potential vorticity and the electrostatics analogy: Quasi-geostrophic theory. Quart. J. Roy. Meteor. Soc., 120, 713731, https://doi.org/10.1002/qj.49712051710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bleck, R., 1974: Short-range prediction in isentropic coordinates with filtered and unfiltered numerical models. Mon. Wea. Rev., 102, 813829, https://doi.org/10.1175/1520-0493(1974)102<0813:SRPIIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bracegirdle, T. J., and S. L. Gray, 2009: The dynamics of a polar low assessed using potential vorticity inversion. Quart. J. Roy. Meteor. Soc., 135, 880893, https://doi.org/10.1002/qj.411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bresky, W., and S. Colucci, 1996: A forecast and analyzed cyclogenesis event diagnosed with potential vorticity. Mon. Wea. Rev., 124, 22272244, https://doi.org/10.1175/1520-0493(1996)124<2227:AFAACE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J., 1955: The use of primitive equations of motion in numerical prediction. Tellus, 7, 2226, https://doi.org/10.3402/tellusa.v7i1.8772.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clough, S. A., C. S. A. Davitt, and A. J. Thorpe, 1996: Attribution concepts applied to the omega equation. Quart. J. Roy. Meteor. Soc., 122, 19431962, https://doi.org/10.1002/qj.49712253610.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danielsen, E., 1968: Stratospheric-tropospheric exchange based on radioactivity, ozone and potential vorticity. J. Atmos. Sci., 25, 502518, https://doi.org/10.1175/1520-0469(1968)025<0502:STEBOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., 1992: Piecewise potential vorticity inversion. J. Atmos. Sci., 49, 13971411, https://doi.org/10.1175/1520-0469(1992)049<1397:PPVI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and K. A. Emanuel, 1991: Potential vorticity diagnostics of cyclogenesis. Mon. Wea. Rev., 119, 19291953, https://doi.org/10.1175/1520-0493(1991)119<1929:PVDOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egger, J., 2009: Piecewise potential vorticity inversion and vortex interaction. J. Atmos. Sci., 66, 32083216, https://doi.org/10.1175/2009JAS3079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hakim, G. J., 2008: A probabilistic theory for balance dynamics. J. Atmos. Sci., 65, 29492960, https://doi.org/10.1175/2007JAS2499.1.

  • Hakim, G. J., D. Keyser, and L. Bosart, 1996: The Ohio valley wave-merger cyclogenesis event of 25–26 January 1978. Part II: Diagnosis using quasigeostrophic potential vorticity inversion. Mon. Wea. Rev., 124, 21762205, https://doi.org/10.1175/1520-0493(1996)124<2176:TOVWMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartley, D., J. Villarin, R. Black, and C. A. Davis, 1998: A new perspective on the dynamical link between the stratosphere and the troposphere. Nature, 391, 471473, https://doi.org/10.1038/35112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herbert, F., 1971: Statistische und quasistatische Bewegungen in der Atmosphäre. Beitr. Phys. Atmos., 44, 1752.

  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, https://doi.org/10.1002/qj.49711147002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleinschmidt, E., 1955: Die Entstehung einer Höhenzyklone über Nordamerika. Tellus, 7, 96110, https://doi.org/10.3402/tellusa.v7i1.8766.

  • McIntyre, M. E., 2012: Potential vorticity. 2nd ed. Encyclopedia of Atmospheric Science, J. Holton, J. Pyle, and J. Curry, Eds., Elsevier, 375–383, http://www.sciencedirect.com/science/article/pii/B9780123822253001407.

  • Mohebalhojeh, A. R., and M. E. McIntyre, 2007: Local mass conservation and velocity splitting in PV-based models. Part I: The hyperbalance equations. J. Atmos. Sci., 64, 17821793, https://doi.org/10.1175/JAS3933.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pallàs-Sanz, E., and Á. Viúdez, 2007: Three-dimensional ageostrophic motion in mesoscale vortex dipoles. J. Phys. Oceanogr., 37, 84105, https://doi.org/10.1175/JPO2978.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pomroy, H. R., and A. J. Thorpe, 2000: The evolution and dynamical role of reduced upper-tropospheric potential vorticity in intensive observing period one of FASTEX. Mon. Wea. Rev., 128, 18171834, https://doi.org/10.1175/1520-0493(2000)128<1817:TEADRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spengler, T., and J. Egger, 2012: Potential vorticity and causality. J. Atmos. Sci., 69, 26002607, https://doi.org/10.1175/JAS-D-11-0313.1.

  • Teubler, F., and M. Riemer, 2016: Dynamics of Rossby wave packets in a quantitative potential vorticity–potential temperature framework. J. Atmos. Sci., 73, 10631081, https://doi.org/10.1175/JAS-D-15-0162.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, A. J., 1985: Diagnosis of balanced vortex structures using potential vorticity. J. Atmos. Sci., 42, 397406, https://doi.org/10.1175/1520-0469(1985)042<0397:DOBVSU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, A. J., 1997: Attribution and its application to mesoscale structure associated with tropopause folds. Quart. J. Roy. Meteor. Soc., 123, 23772399, https://doi.org/10.1002/qj.49712354411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., and K. A. Emanuel, 1995: Potential vorticity diagnostics of hurricane movement. Part I: A case study of Hurricane Bob (1991). Mon. Wea. Rev., 123, 6992, https://doi.org/10.1175/1520-0493(1995)123<0069:PVDOHM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 28 28 6
PDF Downloads 12 12 2

Nonuniqueness of Attribution in Piecewise Potential Vorticity Inversion

View More View Less
  • 1 Meteorological Institute, University of Munich, Munich, Germany
  • | 2 Geophysical Institute, University of Bergen, and Bjerknes Centre for Climate Research, Bergen, Norway
© Get Permissions
Restricted access

Abstract

Piecewise potential vorticity inversion (PPVI) seeks to determine the impact of observed potential vorticity (PV) anomalies on the surrounding flow. This widely used technique is based on dividing a flow domain D into subdomains D1 and D2 = DD1. The influence of PV in D1 on the flow in D2 is assessed by removing all PV anomalies in D2 and then inverting the modified PV in D. The resulting flow with streamfunction ψ1 is attributed to the PV anomalies in D1. The relation of PV in D1 to ψ1 in D2 is not unique, because there are many PV distributions in D1 that induce the same ψ1. There is, however, a unique solution if the ageostrophic circulation is included in the inversion procedure.

The superposition principle requires that the sum of inverted flows with PV = 0 in D2 and the complementary ones with PV = 0 in D1 equal the inverted flow for the complete observed PV in D. It is demonstrated, using two isolated PV balls as a paradigmatic example, that the superposition principle is violated if the ageostrophic circulation is included in PPVI, because the ageostrophic circulation cannot be associated with only one of the anomalies.

Inversions of Ertel’s PV are carried out using Charney’s balance condition. PPVI is not unique in that case, because many different PV fields can be specified in D1, which all lead to the same inverted flow in D2. The balance condition assumes vanishing vertical velocity w so that uniqueness cannot be established by including w in the inversion, as was possible in the quasigeostrophic case.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Joseph Egger, j.egger@lrz.uni-muenchen.de

Abstract

Piecewise potential vorticity inversion (PPVI) seeks to determine the impact of observed potential vorticity (PV) anomalies on the surrounding flow. This widely used technique is based on dividing a flow domain D into subdomains D1 and D2 = DD1. The influence of PV in D1 on the flow in D2 is assessed by removing all PV anomalies in D2 and then inverting the modified PV in D. The resulting flow with streamfunction ψ1 is attributed to the PV anomalies in D1. The relation of PV in D1 to ψ1 in D2 is not unique, because there are many PV distributions in D1 that induce the same ψ1. There is, however, a unique solution if the ageostrophic circulation is included in the inversion procedure.

The superposition principle requires that the sum of inverted flows with PV = 0 in D2 and the complementary ones with PV = 0 in D1 equal the inverted flow for the complete observed PV in D. It is demonstrated, using two isolated PV balls as a paradigmatic example, that the superposition principle is violated if the ageostrophic circulation is included in PPVI, because the ageostrophic circulation cannot be associated with only one of the anomalies.

Inversions of Ertel’s PV are carried out using Charney’s balance condition. PPVI is not unique in that case, because many different PV fields can be specified in D1, which all lead to the same inverted flow in D2. The balance condition assumes vanishing vertical velocity w so that uniqueness cannot be established by including w in the inversion, as was possible in the quasigeostrophic case.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Joseph Egger, j.egger@lrz.uni-muenchen.de
Save