• Alaka, M., 1961: The occurrence of anomalous winds and their significance. Mon. Wea. Rev., 89, 482494, https://doi.org/10.1175/1520-0493(1961)089<0482:TOOAWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alaka, M., 1962: On the occurrence of dynamic instability in incipient and developing hurricanes. Mon. Wea. Rev., 90, 4958, https://doi.org/10.1175/1520-0493(1962)090<0049:OTOODI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, P. G., and R. A. Anthes, 1971: On the asymmetric structure of the tropical cyclone outflow layer. J. Atmos. Sci., 28, 13481366, https://doi.org/10.1175/1520-0469(1971)028<1348:OTASOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanchard, D. O., W. R. Cotton, and J. M. Brown, 1998: Mesoscale circulation growth under conditions of weak inertial instability. Mon. Wea. Rev., 126, 118140, https://doi.org/10.1175/1520-0493(1998)126<0118:MCGUCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blumen, W., and W. M. Washington, 1969: The effect of horizontal shear flow on geostrophic adjustment in a barotropic fluid. Tellus, 21, 167176, https://doi.org/10.3402/tellusa.v21i2.10070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H., 1993: Observations and Theory of Weather Systems. Vol. 2, Synoptic-Dynamic Meteorology in Midlatitudes, Oxford University Press, 608 pp.

  • Boos, W. R., and K. A. Emanuel, 2009: Annual intensification of the Somali jet in a quasi-equilibrium framework: Observational composites. Quart. J. Roy. Meteor. Soc., 135, 319335, https://doi.org/10.1002/qj.388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brill, K. F., 2014: Revisiting an old concept: The gradient wind. Mon. Wea. Rev., 142, 14601471, https://doi.org/10.1175/MWR-D-13-00088.1.

  • Charney, J. G., 1973: Planetary fluid dynamics. Dynamic Meteorology, P. Morel, Ed., D. Reidel, 97–351, https://doi.org/10.1007/978-94-010-2599-7_2.

    • Crossref
    • Export Citation
  • Ciesielski, P. E., D. E. Stevens, R. H. Johnson, and K. R. Dean, 1989: Observational evidence for asymmetric inertial instability. J. Atmos. Sci., 46, 817831, https://doi.org/10.1175/1520-0469(1989)046<0817:OEFAII>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., 1988: Inertial wind path and sea surface temperature patterns near the Gulf of Tehuantepec and Gulf of Papagayo. J. Geophys. Res., 93, 15 49115 501, https://doi.org/10.1029/JC093iC12p15491.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., J. Y. Hwang, and D. J. Stensrud, 2010: Environmental factors in the upscale growth and longevity of MCSs derived from Rapid Update Cycle analyses. Mon. Wea. Rev., 138, 35143539, https://doi.org/10.1175/2010MWR3233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawson, A., 2016: Windspharm: A high-level library for global wind field computations using spherical harmonics. J. Open Res. Software, 4, e31, https://doi.org/10.5334/jors.129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and M. A. Shapiro, 1999: Flow response to large-scale topography: The Greenland tip jet. Tellus, 51A, 728748, https://doi.org/10.3402/tellusa.v51i5.14471.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1981: On the inertial stability of the equatorial middle atmosphere. J. Atmos. Sci., 38, 23542364, https://doi.org/10.1175/1520-0469(1981)038<2354:OTISFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1978: Inertial stability and mesoscale convective systems. Ph.D. thesis, Massachusetts Institute of Technology, 207 pp.

  • Emanuel, K. A., 1979: Inertial instability and mesoscale convective systems. Part I: Linear theory of inertial instability in rotating viscous fluids. J. Atmos. Sci., 36, 24252449, https://doi.org/10.1175/1520-0469(1979)036<2425:IIAMCS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fortuin, J. P. F., H. M. Kelder, M. Sigmond, R. Oemraw, and C. R. Becker, 2003: Inertial instability flow in the troposphere over Suriname during the South American monsoon. Geophys. Res. Lett., 30, 1482, https://doi.org/10.1029/2002GL016754.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayashi, H., M. Shiotani, and J. C. Gille, 2002: Horizontal wind disturbances induced by inertial instability in the equatorial middle atmosphere as seen in rocketsonde observations. J. Geophys. Res., 107, 4228–4228, https://doi.org/10.1029/2001JD000922.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., 1983: Stationary and quasi-stationary eddies in the extratropical troposphere: Theory. Large-Scale Dynamical Processes in the Atmosphere, B. J. Hoskins and R. Pearce, Eds., Academic Press, 127–168.

  • Hess, S. L., 1959: Introduction to Theoretical Meteorology. Holt, Rinehart and Winston, 362 pp.

  • Hitchman, M. H., C. B. Leovy, J. C. Gille, and P. L. Bailey, 1987: Quasi-stationary zonally asymmetric circulations in the equatorial lower mesosphere. J. Atmos. Sci., 44, 22192236, https://doi.org/10.1175/1520-0469(1987)044<2219:QSZACI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1972: An Introduction to Dynamic Meteorology. Academic Press, 319 pp.

  • Holton, J. R., and G. J. Hakim, 2012: An Introduction to Dynamic Meteorology. 5th ed. Academic Press, 532 pp.

  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, https://doi.org/10.1002/qj.49711147002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurd, W. E., 1929: Northers of the Gulf of Tehuantepec. Mon. Wea. Rev., 57, 192194, https://doi.org/10.1175/1520-0493(1929)57<192:NOTGOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knox, J. A., 1997: Possible mechanisms of clear-air turbulence in strongly anticyclonic flows. Mon. Wea. Rev., 125, 12511259, https://doi.org/10.1175/1520-0493(1997)125<1251:PMOCAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knox, J. A., and V. L. Harvey, 2005: Global climatology of inertial instability and Rossby wave breaking in the stratosphere. J. Geophys. Res., 110, D06108, https://doi.org/10.1029/2004JD005068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, S. E., D. Hamilton, D. Kramer, and A. Langmaid, 1998: Mesoscale dynamics in the Palm Sunday tornado outbreak. Mon. Wea. Rev., 126, 20312060, https://doi.org/10.1175/1520-0493(1998)126<2031:MDITPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., and V. Wong, 1979: A planetary boundary-layer model for the Somali jet. J. Atmos. Sci., 36, 18951907, https://doi.org/10.1175/1520-0469(1979)036<1895:APBLMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., J. Molinari, and H. L. Pan, 1976: Numerical simulation of the Somali jet. J. Atmos. Sci., 33, 23502362, https://doi.org/10.1175/1520-0469(1976)033<2350:NSOTSJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., P. Cunningham, and K. Rajendran, 2005: Anomalous gradient winds in the subtropical jet stream and interpretations of forecast failures. Meteor. Atmos. Phys., 88, 237250, https://doi.org/10.1007/s00703-004-0075-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leary, C., 1974: Comment on “Anomalous gradient winds: Existence and implications.” Mon. Wea. Rev., 102, 257–258, https://doi.org/10.1175/1520-0493(1974)102<0257:COGWEA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levy, G., and J. Patoux, 2010: Indian Ocean near-equatorial symmetric stability from satellite observations: An elusive connection to atmospheric convection. Int. J. Remote Sens., 31, 46654681, https://doi.org/10.1080/01431161.2010.485153.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., 2007: Mesoscale Dynamics. Cambridge University Press, 674 pp.

    • Crossref
    • Export Citation
  • Mahrt, L. J., 1972: A numerical study of the influence of advective accelerations in an idealized, low-latitude, planetary boundary layer. J. Atmos. Sci., 29, 14771484, https://doi.org/10.1175/1520-0469(1972)029<1477:ANSOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P., and Y. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. Wiley-Blackwell, 407 pp.

    • Crossref
    • Export Citation
  • Mogil, H. M., and R. L. Holle, 1972: Anomalous gradient winds: Existence and implications. Mon. Wea. Rev., 100, 709716, https://doi.org/10.1175/1520-0493(1972)100<0709:AGWEAI>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mogil, H. M., and R. L. Holle, 1974: Reply. Mon. Wea. Rev., 102, 258259, https://doi.org/10.1175/1520-0493(1974)102<0258:R>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., and D. Vollaro, 2014: Symmetric instability in the outflow layer of a major hurricane. J. Atmos. Sci., 71, 37393746, https://doi.org/10.1175/JAS-D-14-0117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, G. W. K., 2013: Impact of the high topography of Madagascar on the structure of the Findlater jet. Geophys. Res. Lett., 40, 23672372, https://doi.org/10.1002/grl.50399.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Sullivan, D. J., and M. H. Hitchman, 1992: Inertial instability and Rossby wave breaking in a numerical model. J. Atmos. Sci., 49, 9911002, https://doi.org/10.1175/1520-0469(1992)049<0991:IIARWB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayleigh, L., 1917: On the dynamics of revolving fluids. Proc. Roy. Soc. London, 93A, 148154, https://doi.org/10.1098/rspa.1917.0010.

    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., and B. J. Hoskins, 1995: A model of the Asian summer monsoon. Part II: Cross-equatorial flow and PV behavior. J. Atmos. Sci., 52, 13411356, https://doi.org/10.1175/1520-0469(1995)052<1341:AMOTAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowe, S. M., and M. H. Hitchman, 2015: On the role of inertial instability in stratosphere–troposphere exchange near midlatitude cyclones. J. Atmos. Sci., 72, 21312151, https://doi.org/10.1175/JAS-D-14-0210.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowe, S. M., and M. H. Hitchman, 2016: On the relationship between inertial instability, poleward momentum surges, and jet intensifications near midlatitude cyclones. J. Atmos. Sci., 73, 22992315, https://doi.org/10.1175/JAS-D-15-0183.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, K., and T. J. Dunkerton, 2002: Layered structure associated with low potential vorticity near the tropopause seen in high-resolution radiosondes over Japan. J. Atmos. Sci., 59, 27822800, https://doi.org/10.1175/1520-0469(2002)059<2782:LSAWLP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sawyer, J. S., 1947: Notes on the theory of tropical cyclones. Quart. J. Roy. Meteor. Soc., 73, 101126, https://doi.org/10.1002/qj.49707331509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaefer, V. J., and W. E. Hubert, 1955: A case study of jet stream clouds. Tellus, 7, 301307, https://doi.org/10.3402/tellusa.v7i3.8906.

  • Schultz, D. M., and P. N. Schumacher, 1999: The use and misuse of conditional symmetric instability. Mon. Wea. Rev., 127, 27092732, https://doi.org/10.1175/1520-0493(1999)127<2709:TUAMOC>2.0.CO;2; Corrigendum, 128, 1573, https://doi.org/10.1175/1520-0493(1999)127<1573:CORRIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., and J. A. Knox, 2007: Banded convection caused by frontogenesis in a conditionally, symmetrically, and inertially unstable environment. Mon. Wea. Rev., 135, 20952110, https://doi.org/10.1175/MWR3400.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., W. E. Bracken, L. F. Bosart, G. J. Hakim, M. A. Bedrick, M. J. Dickinson, and K. R. Tyle, 1997: The 1993 superstorm cold surge: Frontal structure, gap flow, and tropical impact. Mon. Wea. Rev., 125, 539, https://doi.org/10.1175/1520-0493(1997)125<0005:TSCSFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., W. E. Bracken, and L. F. Bosart, 1998: Planetary- and synoptic-scale signatures associated with Central American cold surges. Mon. Wea. Rev., 126, 527, https://doi.org/10.1175/1520-0493(1998)126<0005:PASSSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and D. M. Schultz, 2001: Inertial instability: Climatology and possible relationship to severe weather predictability. Preprints, Ninth Conf. on Mesoscale Processes, Fort Lauderdale, FL, Amer. Meteor. Soc., 372–375.

  • Schumacher, R. S., D. M. Schultz, and J. A. Knox, 2010: Convective snowbands downstream of the Rocky Mountains in an environment with conditional, dry symmetric, and inertial instabilities. Mon. Wea. Rev., 138, 44164438, https://doi.org/10.1175/2010MWR3334.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., D. M. Schultz, and J. A. Knox, 2015: Influence of terrain resolution on banded convection in the lee of the Rocky Mountains. Mon. Wea. Rev., 143, 13991416, https://doi.org/10.1175/MWR-D-14-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shutts, G. J., 1990: SCAPE charts from numerical weather prediction model fields. Mon. Wea. Rev., 118, 27452751, https://doi.org/10.1175/1520-0493(1990)118<2745:SCFNWP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siedersleben, S. K., and A. Gohm, 2016: The missing link between terrain-induced potential vorticity banners and banded convection. Mon. Wea. Rev., 144, 40634080, https://doi.org/10.1175/MWR-D-16-0042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steenburgh, W. J., D. M. Schultz, and B. A. Colle, 1998: The structure and evolution of gap outflow over the Gulf of Tehuantepec, Mexico. Mon. Wea. Rev., 126, 26732691, https://doi.org/10.1175/1520-0493(1998)126<2673:TSAEOG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, D. E., 1983: On symmetric stability and instability of zonal mean flows near the equator. J. Atmos. Sci., 40, 882893, https://doi.org/10.1175/1520-0469(1983)040<0882:OSSAIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, D. E., and P. E. Ciesielski, 1986: Inertial instability of horizontally sheared flow away from the equator. J. Atmos. Sci., 43, 28452856, https://doi.org/10.1175/1520-0469(1986)043<2845:IIOHSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stumpf, H. G., 1975: Satellite detection of upwelling in the Gulf of Tehuantepec, Mexico. J. Phys. Oceanogr., 5, 383388, https://doi.org/10.1175/1520-0485(1975)005<0383:SDOUIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomas, R. A., and P. J. Webster, 1997: The role of inertial instability in determining the location and strength of near-equatorial convection. Quart. J. Roy. Meteor. Soc., 123, 14451482, https://doi.org/10.1002/qj.49712354202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomas, R. A., J. R. Holton, and P. J. Webster, 1999: The influence of cross-equatorial pressure gradients on the location of near-equatorial convection. Quart. J. Roy. Meteor. Soc., 125, 11071127, https://doi.org/10.1002/qj.1999.49712555603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., and R. D. Sharman, 2016: Mechanisms influencing cirrus banding and aviation turbulence near a convectively enhanced upper-level jet stream. Mon. Wea. Rev., 144, 30033027, https://doi.org/10.1175/MWR-D-16-0094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Mieghem, J. M., 1951: Hydrodynamic instability. Compendium of Meteorology, T. F. Malone, Ed., Amer. Meteor. Soc., 434–453.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 64 64 10
PDF Downloads 77 77 10

A Global Climatology of Tropospheric Inertial Instability

View More View Less
  • 1 Centre for Atmospheric Science, School of Earth and Environmental Sciences, University of Manchester, Manchester, United Kingdom
  • | 2 Centre for Atmospheric Science, School of Earth and Environmental Sciences, and National Centre for Atmospheric Science, University of Manchester, Manchester, United Kingdom
© Get Permissions
Restricted access

Abstract

A climatology of tropospheric inertial instability is constructed using the European Centre for Medium-Range Weather Forecasts interim reanalysis (ERA-Interim) at 250, 500, and 850 hPa. For each level, two criteria are used. The first criterion is the traditional criterion of absolute vorticity that is opposite in sign to the local Coriolis parameter. The second criterion, referred to as the gradient criterion, is the traditional criterion with an added term incorporating flow curvature. Both criteria show that instability, on all pressure levels, occurs most frequently in the tropics and decreases toward the poles. Compared to the traditional criterion, the gradient criterion diagnoses instability much more frequently outside the tropics and less frequently near the equator. The global distribution of inertial instability also shows many local maxima in the occurrence of instability. A sample of these local maxima is investigated further by constructing composites of the synoptic-scale flow associated with instability. The composites show that instability occurs in association with cross-equatorial flow in the North Atlantic Ocean, the Somali jet, tip jets off northern Madagascar, the western Pacific subtropical high, gap winds across Central America, upper-level ridging over western North America, and the North Atlantic polar jet. Furthermore, relatively long-lived synoptic-scale regions of instability are found within the midlatitude jet streams.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Callum F. Thompson, thompson.callum@yahoo.co.uk

Abstract

A climatology of tropospheric inertial instability is constructed using the European Centre for Medium-Range Weather Forecasts interim reanalysis (ERA-Interim) at 250, 500, and 850 hPa. For each level, two criteria are used. The first criterion is the traditional criterion of absolute vorticity that is opposite in sign to the local Coriolis parameter. The second criterion, referred to as the gradient criterion, is the traditional criterion with an added term incorporating flow curvature. Both criteria show that instability, on all pressure levels, occurs most frequently in the tropics and decreases toward the poles. Compared to the traditional criterion, the gradient criterion diagnoses instability much more frequently outside the tropics and less frequently near the equator. The global distribution of inertial instability also shows many local maxima in the occurrence of instability. A sample of these local maxima is investigated further by constructing composites of the synoptic-scale flow associated with instability. The composites show that instability occurs in association with cross-equatorial flow in the North Atlantic Ocean, the Somali jet, tip jets off northern Madagascar, the western Pacific subtropical high, gap winds across Central America, upper-level ridging over western North America, and the North Atlantic polar jet. Furthermore, relatively long-lived synoptic-scale regions of instability are found within the midlatitude jet streams.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Callum F. Thompson, thompson.callum@yahoo.co.uk
Save