Dynamic Multiscale Modes of Severe Storm Structure Detected in Mobile Doppler Radar Data by Entropy Field Decomposition

Lawrence R. Frank Center for Scientific Computation in Imaging, University of California, San Diego, La Jolla, California

Search for other papers by Lawrence R. Frank in
Current site
Google Scholar
PubMed
Close
,
Vitaly L. Galinsky Center for Scientific Computation in Imaging, and Electrical and Computer Engineering Department, University of California, San Diego, La Jolla, California

Search for other papers by Vitaly L. Galinsky in
Current site
Google Scholar
PubMed
Close
,
Leigh Orf Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Leigh Orf in
Current site
Google Scholar
PubMed
Close
, and
Joshua Wurman Center for Severe Weather Research, Boulder, Colorado

Search for other papers by Joshua Wurman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The detection of complex spatially and temporally varying coherent structures in data from highly nonlinear and non-Gaussian systems is a challenging problem in a wide range of scientific disciplines. This is the case in the analysis of Doppler on Wheels (DOW) mobile Doppler radar (MDR) data where the goal is to detect rapidly evolving coherent storm structures that reflect the complex interplay of nonlinear dynamical processes. Estimating and quantifying such structures from the noisy and relatively sparsely sampled MDR data poses a difficult inverse problem for which traditional analysis methods such as expert and subjective pattern recognition, thresholding, and contouring choices can be difficult. In this paper the authors investigate the application of a recently developed objective method for the analysis of spatiotemporal data called the entropy field decomposition (EFD) to the problem of the analysis of MDR data in tornadic supercells. The EFD method is based on a field theoretic reformulation of Bayesian probability theory that incorporates prior information from the coupling structure within the data to automatically detect multivariate spatiotemporal modes. The method is first applied to data from a numerically simulated tornadic supercell in order to validate the method’s ability to detect and quantify known storm-scale features. It is then applied to actual MDR data collected during the evolution of a tornadic supercell—data that have been analyzed previously by experts. The authors demonstrate the ability of the EFD method to detect spatiotemporal features currently believed to be related to tornadogenesis. This new method has the potential to provide improved and objective analysis/detection with increased sensitivity to nonlinear and non-Gaussian spatially and temporally coherent features related to tornadogenesis and thus offers the potential to aid in the study, prediction, and warnings of tornadoes.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lawrence R. Frank, lfrank@ucsd.edu

Abstract

The detection of complex spatially and temporally varying coherent structures in data from highly nonlinear and non-Gaussian systems is a challenging problem in a wide range of scientific disciplines. This is the case in the analysis of Doppler on Wheels (DOW) mobile Doppler radar (MDR) data where the goal is to detect rapidly evolving coherent storm structures that reflect the complex interplay of nonlinear dynamical processes. Estimating and quantifying such structures from the noisy and relatively sparsely sampled MDR data poses a difficult inverse problem for which traditional analysis methods such as expert and subjective pattern recognition, thresholding, and contouring choices can be difficult. In this paper the authors investigate the application of a recently developed objective method for the analysis of spatiotemporal data called the entropy field decomposition (EFD) to the problem of the analysis of MDR data in tornadic supercells. The EFD method is based on a field theoretic reformulation of Bayesian probability theory that incorporates prior information from the coupling structure within the data to automatically detect multivariate spatiotemporal modes. The method is first applied to data from a numerically simulated tornadic supercell in order to validate the method’s ability to detect and quantify known storm-scale features. It is then applied to actual MDR data collected during the evolution of a tornadic supercell—data that have been analyzed previously by experts. The authors demonstrate the ability of the EFD method to detect spatiotemporal features currently believed to be related to tornadogenesis. This new method has the potential to provide improved and objective analysis/detection with increased sensitivity to nonlinear and non-Gaussian spatially and temporally coherent features related to tornadogenesis and thus offers the potential to aid in the study, prediction, and warnings of tornadoes.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lawrence R. Frank, lfrank@ucsd.edu
Save
  • Adlerman, E. J., K. K. Droegemeier, and R. Davies-Jones, 1999: A numerical simulation of cyclic mesocyclogenesis. J. Atmos. Sci., 56, 20452069, https://doi.org/10.1175/1520-0469(1999)056<2045:ANSOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atkins, N. T., A. McGee, R. Ducharme, R. M. Wakimoto, and J. Wurman, 2012: The LaGrange tornado during VORTEX2. Part II: Photogrammetric analysis of the tornado combined with dual-Doppler radar data. Mon. Wea. Rev., 140, 29392958, https://doi.org/10.1175/MWR-D-11-00285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beck, J. R., J. L. Schroeder, and J. M. Wurman, 2006: High-resolution dual-Doppler analyses of the 29 May 2001 Kress, Texas, cyclic supercell. Mon. Wea. Rev., 134, 31253148, https://doi.org/10.1175/MWR3246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beckmann, C. F., and S. M. Smith, 2004: Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans. Med. Imaging, 23, 137152, https://doi.org/10.1109/TMI.2003.822821.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, A. J., and T. J. Sejnowski, 1995: An information maximization approach to blind separation and blind deconvolution. Neural Comput., 7, 11291159, https://doi.org/10.1162/neco.1995.7.6.1129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., 2007: Advances in applications of the physics of fluids to severe weather systems. Rep. Prog. Phys., 70, 12591323, https://doi.org/10.1088/0034-4885/70/8/R01.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., 1978: Mesocyclone evolution and tornadogenesis: Some observations. Mon. Wea. Rev., 106, 9951011, https://doi.org/10.1175/1520-0493(1978)106<0995:MEATSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., 1984: Vertical vorticity generation and mesocyclone sustenance in tornadic thunderstorms: The observational evidence. Mon. Wea. Rev., 112, 22532269, https://doi.org/10.1175/1520-0493(1984)112<2253:VVGAMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burda, Z., J. Duda, J. M. Luck, and B. Waclaw, 2009: Localization of the maximal entropy random walk. Phys. Rev. Lett., 102, 160602, https://doi.org/10.1103/PhysRevLett.102.160602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burgers, J., 1948: A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech., 1, 171199, https://doi.org/10.1016/S0065-2156(08)70100-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., and M. D. Parker, 2017: Simulated supercells in nontornadic and tornadic VORTEX2 environments. Mon. Wea. Rev., 145, 149180, https://doi.org/10.1175/MWR-D-16-0226.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comon, P., 1994: Independent component analysis, A new concept? Signal Processing, 36, 287314, https://doi.org/10.1016/0165-1684(94)90029-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craddock, J. M., 1973: Problems and prospects for eigenvector analysis in meteorology. Statistician, 22, 133145, https://doi.org/10.2307/2987365.

  • Dahl, J. M. L., M. D. Parker, and L. J. Wicker, 2012: Uncertainties in trajectory calculations within near-surface mesocyclones of simulated supercells. Mon. Wea. Rev., 140, 29592966, https://doi.org/10.1175/MWR-D-12-00131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., R. J. Trapp, and H. B. Bluestein, 2001: Tornadoes and Tornadic Storms. Meteor. Monogr., No. 50, Amer. Meteor. Soc., 167–221, https://doi.org/10.1175/0065-9401-28.50.167.

    • Crossref
    • Export Citation
  • Dowell, D. C., and H. B. Bluestein, 1997: The Arcadia, Oklahoma, storm of 17 May 1981: Analysis of a supercell during tornadogenesis. Mon. Wea. Rev., 125, 25622582, https://doi.org/10.1175/1520-0493(1997)125<2562:TAOSOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and H. B. Bluestein, 2002a: The 8 June 1995 McLean, Texas, storm. Part I: Observations of cyclic tornadogenesis. Mon. Wea. Rev., 130, 26262648, https://doi.org/10.1175/1520-0493(2002)130<2626:TJMTSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and H. B. Bluestein, 2002b: The 8 June 1995 McLean, Texas, storm. Part II: Cyclic tornado formation, maintenance, and dissipation. Mon. Wea. Rev., 130, 26492670, https://doi.org/10.1175/1520-0493(2002)130<2649:TJMTSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enßlin, T. A., M. Frommert, and F. S. Kitaura, 2009: Information field theory for cosmological perturbation reconstruction and nonlinear signal analysis. Phys. Rev., 80D, 105005, https://doi.org/10.1103/PhysRevD.80.105005.

    • Search Google Scholar
    • Export Citation
  • Feynman, R. P., 1949: Space-time approach to quantum electrodynamics. Phys. Rev., 76, 769789, https://doi.org/10.1103/PhysRev.76.769.

  • Frank, L. R., and V. L. Galinsky, 2014: Information pathways in a disordered lattice. Phys. Rev., 89E, 032142, https://doi.org/10.1103/PhysRevE.89.032142.

    • Search Google Scholar
    • Export Citation
  • Frank, L. R., and V. L. Galinsky, 2016a: Detecting spatio-temporal modes in multivariate data by entropy field decomposition. J. Phys., 49A, 395001, https://doi.org/10.1088/1751-8113/49/39/395001.

    • Search Google Scholar
    • Export Citation
  • Frank, L. R., and V. L. Galinsky, 2016b: Dynamic multiscale modes of resting state brain activity detected by entropy field decomposition. Neural Comput., 28, 17691811, https://doi.org/10.1162/NECO_a_00871.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, L. R., R. B. Buxton, and E. C. Wong, 1998: Probabilistic analysis of functional magnetic resonance imaging data. Magn. Reson. Med., 39, 132148, https://doi.org/10.1002/mrm.1910390120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, L. R., R. B. Buxton, and E. C. Wong, 2001: Estimation of respiration-induced noise fluctuations from undersampled fMRI data. Magn. Reson. Med., 45, 635644, https://doi.org/10.1002/mrm.1086.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • French, M. M., P. S. Skinner, L. J. Wicker, and H. B. Bluestein, 2015: Documenting a rare tornado merger observed in the 24 May 2011 El Reno–Piedmont, Oklahoma, supercell. Mon. Wea. Rev., 143, 30253043, https://doi.org/10.1175/MWR-D-14-00349.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galinsky, V. L., and L. R. Frank, 2015: Simultaneous multi-scale diffusion estimation and tractography guided by entropy spectrum pathways. IEEE Trans. Med. Imaging, 34, 11771193, https://doi.org/10.1109/TMI.2014.2380812.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grzych, M. L., B. D. Lee, and C. A. Finley, 2007: Thermodynamic analysis of supercell rear-flank downdrafts from Project ANSWERS. Mon. Wea. Rev., 135, 240246, https://doi.org/10.1175/MWR3288.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houser, J. L., H. B. Bluestein, and J. C. Snyder, 2015: Rapid-scan, polarimetric, Doppler radar observations of tornadogenesis and tornado dissipation in a tornadic supercell: The El Reno, Oklahoma storm of 24 May 2011. Mon. Wea. Rev., 143, 26852710, https://doi.org/10.1175/MWR-D-14-00253.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaynes, E. T., 1957a: Information theory and statistical mechanics. Phys. Rev., 106, 620630, https://doi.org/10.1103/PhysRev.106.620.

  • Jaynes, E. T., 1957b: Information theory and statistical mechanics. II. Phys. Rev., 108, 171, https://doi.org/10.1103/PhysRev.108.171.

  • Klemp, J., and R. Rotunno, 1983: A study of the tornadic region within a supercell thunderstorm. J. Atmos. Sci., 40, 359377, https://doi.org/10.1175/1520-0469(1983)040<0359:ASOTTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosiba, K. A., and J. Wurman, 2013: The three-dimensional structure and evolution of a tornado boundary layer. Wea. Forecasting, 28, 15521561, https://doi.org/10.1175/WAF-D-13-00070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosiba, K. A., J. Wurman, Y. Richardson, P. Markowski, P. Robinson, and J. Marquis, 2013: Genesis of the Goshen County, Wyoming, tornado on 5 June 2009 during VORTEX2. Mon. Wea. Rev., 141, 11571181, https://doi.org/10.1175/MWR-D-12-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1956: Empirical orthogonal functions and statistical weather prediction. MIT Dept. of Meteorology Scientific Rep. 1, Statistical Forecasting Project, 52 pp., http://www.o3d.org/abracco/Atlantic/Lorenz1956.pdf.

  • Majcen, M., P. Markowski, Y. Richardson, D. Dowell, and J. Wurman, 2008: Multipass objective analyses of Doppler radar data. J. Atmos. Oceanic Technol., 25, 18451858, https://doi.org/10.1175/2008JTECHA1089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Y. P. Richardson, 2009: Tornadogenesis: Our current understanding, forecasting considerations, and questions to guide future research. Atmos. Res., 93, 310, https://doi.org/10.1016/j.atmosres.2008.09.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Y. P. Richardson, 2014: The influence of environmental low-level shear and cold pools on tornadogenesis: Insights from idealized simulations. J. Atmos. Sci., 71, 243275, https://doi.org/10.1175/JAS-D-13-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., J. M. Straka, and E. N. Rasmussen, 2002: Direct surface thermodynamic observations within the rear-flank downdrafts of nontornadic and tornadic supercells. Mon. Wea. Rev., 130, 16921721, https://doi.org/10.1175/1520-0493(2002)130<1692:DSTOWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., J. M. Straka, and E. N. Rasmussen, 2003: Tornadogenesis resulting from the transport of circulation by a downdraft: Idealized numerical simulations. J. Atmos. Sci., 60, 795823, https://doi.org/10.1175/1520-0469(2003)060<0795:TRFTTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Coauthors, 2012a: The pretornadic phase of the Goshen County, Wyoming, supercell of 5 June 2009 intercepted by VORTEX2. Part I: Evolution of kinematic and surface thermodynamic fields. Mon. Wea. Rev., 140, 28872915, https://doi.org/10.1175/MWR-D-11-00336.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Coauthors, 2012b: The pretornadic phase of the Goshen County, Wyoming, supercell of 5 June 2009 intercepted by VORTEX2. Part II: Intensification of low-level rotation. Mon. Wea. Rev., 140, 29162938, https://doi.org/10.1175/MWR-D-11-00337.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marquis, J. N., Y. P. Richardson, J. M. Wurman, and P. M. Markowski, 2008: Single- and dual-Doppler analysis of a tornadic vortex and surrounding storm scale flow in the Crowell, Texas, supercell of 30 April 2000. Mon. Wea. Rev., 136, 50175043, https://doi.org/10.1175/2008MWR2442.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marquis, J. N., Y. P. Richardson, P. M. Markowski, D. Dowell, and J. M. Wurman, 2012: Tornado maintenance investigated with high-resolution dual-Doppler and EnKF analysis. Mon. Wea. Rev., 140, 327, https://doi.org/10.1175/MWR-D-11-00025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marquis, J. N., Y. P. Richardson, P. M. Markowski, D. Dowell, J. M. Wurman, K. Kosiba, P. Robinson, and G. Romine, 2014: An investigation of the Goshen County, Wyoming, tornadic supercell of 5 June 2009 using EnKF assimilation of mobile mesonet and radar observations collected during VORTEX2. Part I: Experiment design and verification of the EnKF analyses. Mon. Wea. Rev., 142, 530554, https://doi.org/10.1175/MWR-D-13-00007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKeown, M. J., S. Makeig, G. G. Brown, T. P. Jung, S. S. Kindermann, A. J. Bell, and T. J. Sejnowski, 1998: Analysis of fMRI data by blind separation into independent spatial components. Science, 6, 160188.

    • Search Google Scholar
    • Export Citation
  • Obukhov, A. M., 1947: Statistically homogeneous fields on a sphere. Usp. Mat. Nauk, 2, 196198.

  • Obukhov, A. M., 1960: The statistically orthogonal expansion of empirical functions. Izv. Akad. Nauk SSSR, Ser. Geofiz., 3, 432439.

  • Orf, L., R. Wilhelmson, B. Lee, C. Finley, and A. Houston, 2017: Evolution of a long-track violent tornado within a simulated supercell. Bull. Amer. Meteor. Soc., 98, 4568, https://doi.org/10.1175/BAMS-D-15-00073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poline, J.-B., and M. Brett, 2012: The general linear model and fMRI: Does love last forever? Neuroimage, 62, 871880, https://doi.org/10.1016/j.neuroimage.2012.01.133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and J. Klemp, 1985: On the rotation and propagation of simulated supercell thunderstorms. J. Atmos. Sci., 42, 271292, https://doi.org/10.1175/1520-0469(1985)042<0271:OTRAPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryder, L., 1985: Quantum Field Theory. 1st ed. Cambridge University Press, 508 pp.

  • Snyder, C., and F. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131, 16631677, https://doi.org/10.1175//2555.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanamachi, R. L., P. L. Heinselman, and L. J. Wicker, 2015: Impacts of a storm merger on the 24 May 2011 El Reno, Oklahoma, tornadic supercell. Wea. Forecasting, 30, 501524, https://doi.org/10.1175/WAF-D-14-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. Markowski, 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 12431261, https://doi.org/10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., 1999: Observations of nontornadic low-level mesocyclones and attendant tornadogenesis failure during VORTEX. Mon. Wea. Rev., 127, 16931705, https://doi.org/10.1175/1520-0493(1999)127<1693:OONLLM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tryggeson, H., 2007: Analytical vortex solutions to the Navier-Stokes equation. Acta Wexionensia, No. 114/2007, Växjö University, 108 pp., https://www.diva-portal.org/smash/get/diva2:205082/FULLTEXT01.pdf.

  • Wakimoto, R. M., and H. Cai, 2000: Analysis of a nontornadic storm during VORTEX 95. Mon. Wea. Rev., 128, 565592, https://doi.org/10.1175/1520-0493(2000)128<0565:AOANSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., N. T. Atkins, and J. Wurman, 2011: The LaGrange tornado during VORTEX2. Part I: Photogrammetric analysis of the tornado combined with single-Doppler radar data. Mon. Wea. Rev., 139, 22332258, https://doi.org/10.1175/2010MWR3568.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., P. Stauffer, W.-C. Lee, N. T. Atkins, and J. Wurman, 2012: Finescale structure of the LaGrange, Wyoming, tornado during VORTEX2: GBVTD and photogrammetric analyses. Mon. Wea. Rev., 140, 33973418, https://doi.org/10.1175/MWR-D-12-00036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and R. B. Wilhelmson, 1995: Simulation and analysis of tornado development and decay within a three-dimensional supercell thunderstorm. J. Atmos. Sci., 52, 26752703, https://doi.org/10.1175/1520-0469(1995)052<2675:SAAOTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woolrich, M. W., M. Jenkinson, J. M. Brady, and S. M. Smith, 2004: Fully Bayesian spatio-temporal modeling of FMRI data. IEEE Trans. Med. Imaging, 23, 213231, https://doi.org/10.1109/TMI.2003.823065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., 2001: The DOW mobile multiple Doppler network. Preprints, 30th Conf. on Radar Meteorology, Munich, Germany, Amer. Meteor. Soc., 95–97.

  • Wurman, J., and K. A. Kosiba, 2013: Finescale radar observations of tornado and mesocyclone structures. Wea. Forecasting, 28, 11571174, https://doi.org/10.1175/WAF-D-12-00127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., J. Straka, E. Rasmussen, M. Randall, and A. Zahrai, 1997: Design and deployment of a portable, pencil-beam, pulsed, 3-cm Doppler radar. J. Atmos. Oceanic Technol., 14, 15021512, https://doi.org/10.1175/1520-0426(1997)014<1502:DADOAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., Y. Richardson, C. Alexander, S. Weygandt, and P. F. Zhang, 2007a: Dual-Doppler analysis of winds and vorticity budget terms near a tornado. Mon. Wea. Rev., 135, 23922405, https://doi.org/10.1175/MWR3404.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., Y. Richardson, C. Alexander, S. Weygandt, and P. F. Zhang, 2007b: Dual-Doppler and single-Doppler analysis of a tornadic storm undergoing mergers and repeated tornadogenesis. Mon. Wea. Rev., 135, 736758, https://doi.org/10.1175/MWR3276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., P. Robinson, C. Alexander, and Y. Richardson, 2007c: Low-level winds in tornadoes and potential catastrophic tornado impacts in urban areas. Bull. Amer. Meteor. Soc., 88, 3146, https://doi.org/10.1175/BAMS-88-1-31.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., K. A. Kosiba, P. Markowski, Y. Richardson, D. Dowell, and P. Robinson, 2010: Finescale single-and dual-Doppler analysis of tornado intensification, maintenance, and dissipation in the Orleans, Nebraska, supercell. Mon. Wea. Rev., 138, 44394455, https://doi.org/10.1175/2010MWR3330.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., D. Dowell, Y. Richardson, P. Markowski, E. Rasmussen, D. Burgess, L. Wicker, and H. B. Bluestein, 2012: The second Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX2. Bull. Amer. Meteor. Soc., 93, 11471170, https://doi.org/10.1175/BAMS-D-11-00010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., K. Kosiba, P. Robinson, and T. Marshall, 2014: The role of multiple-vortex tornado structure in causing storm researcher fatalities. Bull. Amer. Meteor. Soc., 95, 3145, https://doi.org/10.1175/BAMS-D-13-00221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1575 1203 59
PDF Downloads 287 56 7