Can a Simple Dynamical System Describe the Interplay between Drag and Buoyancy in Terrain-Induced Canopy Flows?

Frederik De Roo Atmospheric Environmental Research, Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany

Search for other papers by Frederik De Roo in
Current site
Google Scholar
PubMed
Close
and
Tirtha Banerjee Atmospheric Environmental Research, Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany

Search for other papers by Tirtha Banerjee in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Under nonneutral stratification and in the presence of topography, the dynamics of turbulent flow within a canopy is not yet completely understood. This has, among other consequences, serious implications for the measurement of surface–atmosphere exchange by means of eddy covariance: for example, the measurement of carbon dioxide fluxes is strongly influenced if drainage flows occur during night, when the flow within the canopy decouples from the flow aloft. An improved physical understanding of the behavior of scalars under canopy turbulence in complex terrain is urgently needed. In the present work, the authors investigate the dynamics of turbulent flow within sloped canopies, focusing on the slope wind and potential temperature. The authors concentrate on the presence of oscillatory behavior in the flow variables in terms of switching of flow regimes by conducting linear stability analysis. The authors revisit and correct the simplified theory that exists in the literature, which is based on the interplay between the drag force and the buoyancy. The authors find that the simplified description of this dynamical system cannot exhibit the observed richness of the dynamics. To augment the simplified dynamical system’s analysis, the authors make use of large-eddy simulation of a three-dimensional hill covered by a homogeneous forest and analyze the phase synchronization behavior of the buoyancy and drag forces in the momentum budget to explore the turbulent dynamics in more detail.

Current affiliation: Applied Terrestrial, Energy, and Atmospheric Modeling, Earth and Environmental Sciences Division (EES-16), Los Alamos National Laboratory, Los Alamos, New Mexico.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Frederik De Roo, frederik.deroo@kit.edu

Abstract

Under nonneutral stratification and in the presence of topography, the dynamics of turbulent flow within a canopy is not yet completely understood. This has, among other consequences, serious implications for the measurement of surface–atmosphere exchange by means of eddy covariance: for example, the measurement of carbon dioxide fluxes is strongly influenced if drainage flows occur during night, when the flow within the canopy decouples from the flow aloft. An improved physical understanding of the behavior of scalars under canopy turbulence in complex terrain is urgently needed. In the present work, the authors investigate the dynamics of turbulent flow within sloped canopies, focusing on the slope wind and potential temperature. The authors concentrate on the presence of oscillatory behavior in the flow variables in terms of switching of flow regimes by conducting linear stability analysis. The authors revisit and correct the simplified theory that exists in the literature, which is based on the interplay between the drag force and the buoyancy. The authors find that the simplified description of this dynamical system cannot exhibit the observed richness of the dynamics. To augment the simplified dynamical system’s analysis, the authors make use of large-eddy simulation of a three-dimensional hill covered by a homogeneous forest and analyze the phase synchronization behavior of the buoyancy and drag forces in the momentum budget to explore the turbulent dynamics in more detail.

Current affiliation: Applied Terrestrial, Energy, and Atmospheric Modeling, Earth and Environmental Sciences Division (EES-16), Los Alamos National Laboratory, Los Alamos, New Mexico.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Frederik De Roo, frederik.deroo@kit.edu
Save
  • Alligood, K. T., T. Sauer, and J. Yorke, 1996: Chaos: An Introduction to Dynamical Systems. Springer, 603 pp.

    • Crossref
    • Export Citation
  • Aubinet, M., and Coauthors, 2010: Direct advection measurements do not help to solve the night-time CO2 closure problem: Evidence from three different forests. Agric. For. Meteor., 150, 655664, https://doi.org/10.1016/j.agrformet.2010.01.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bailey, B. N., and R. Stoll, 2016: The creation and evolution of coherent structures in plant canopy flows and their role in turbulent transport. J. Fluid Mech., 789, 425460, https://doi.org/10.1017/jfm.2015.749.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banerjee, T., G. Katul, S. Fontan, D. Poggi, and M. Kumar, 2013: Mean flow near edges and within cavities situated inside dense canopies. Bound.-Layer Meteor., 149, 1941, https://doi.org/10.1007/s10546-013-9826-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banerjee, T., F. De Roo, and M. Mauder, 2017: Explaining the convector effect in canopy turbulence by means of large-eddy simulation. Hydrol. Earth Syst. Sci., 21, 29873000, https://doi.org/10.5194/hess-21-2987-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beare, R. J., and Coauthors, 2006: An intercomparison of large-eddy simulations of the stable boundary layer. Bound.-Layer Meteor., 118, 247272, https://doi.org/10.1007/s10546-004-2820-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belcher, S. E., N. Jerram, and J. C. R. Hunt, 2003: Adjustment of a turbulent boundary layer to a canopy of roughness elements. J. Fluid Mech., 488, 369398, https://doi.org/10.1017/S0022112003005019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belcher, S. E., J. J. Finnigan, and I. N. Harman, 2008: Flows through forest canopies in complex terrain. Ecol. Appl., 18, 14361453, https://doi.org/10.1890/06-1894.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., and C. Yi, 2012: Optimal control of katabatic flows within canopies. Quart. J. Roy. Meteor. Soc., 138, 16761680, https://doi.org/10.1002/qj.1904.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527, https://doi.org/10.1007/BF00119502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finnigan, J. J., and S. E. Belcher, 2004: Flow over a hill covered with a plant canopy. Quart. J. Roy. Meteor. Soc., 130, 129, https://doi.org/10.1256/qj.02.177.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finnigan, J. J., R. H. Shaw, and E. G. Patton, 2009: Turbulence structure above a vegetation canopy. J. Fluid Mech., 637, 387424, https://doi.org/10.1017/S0022112009990589.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fleagle, R. G., 1950: A theory of air drainage. J. Meteor., 7, 227232, https://doi.org/10.1175/1520-0469(1950)007<0227:ATOAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grant, E. R., A. N. Ross, and B. A. Gardiner, 2016: Modelling canopy flows over complex terrain. Bound.-Layer Meteor., 161, 417437, https://doi.org/10.1007/s10546-016-0176-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, P., and J. Hunt, 1975: Turbulent wind flow over a low hill. Quart. J. Roy. Meteor. Soc., 101, 929955, https://doi.org/10.1002/qj.49710143015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katul, G. G., J. J. Finnigan, D. Poggi, R. Leuning, and S. E. Belcher, 2006: The influence of hilly terrain on canopy–atmosphere carbon dioxide exchange. Bound.-Layer Meteor., 118, 189216, https://doi.org/10.1007/s10546-005-6436-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kralemann, B., L. Cimponeriu, M. Rosenblum, A. Pikovsky, and R. Mrowka, 2007: Uncovering interaction of coupled oscillators from data. Phys. Rev., 76E, 055201, https://doi.org/10.1103/PhysRevE.76.055201.

    • Search Google Scholar
    • Export Citation
  • Kralemann, B., L. Cimponeriu, M. Rosenblum, and A. Pikovsky, 2008: Phase dynamics of coupled oscillators reconstructed from data. Phys. Rev., 77E, 066205, https://doi.org/10.1103/PhysRevE.77.066205.

    • Search Google Scholar
    • Export Citation
  • Kroeniger, K., T. Banerjee, F. De Roo, and M. Mauder, 2018: Flow adjustment inside homogeneous canopies after a leading edge—An analytical approach backed by LES. Agric. For. Meteor., https://doi.org/10.1016/j.agrformet.2017.09.019, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kutter, E., C. Yi, G. Hendrey, H. Liu, T. Eaton, and W. Ni-Meister, 2017: Recirculation over complex terrain. J. Geophys. Res. Atmos., 122, 66376651, https://doi.org/10.1002/2016JD026409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laughlin, G. P., and J. D. Kalma, 1987: Frost hazard assessment from local weather and terrain data. Agric. For. Meteor., 40, 116, https://doi.org/10.1016/0168-1923(87)90050-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luminari, N., C. Airiau, and A. Bottaro, 2016: Drag-model sensitivity of Kelvin-Helmholtz waves in canopy flows. Phys. Fluids, 28, 12103, https://doi.org/10.1063/1.4971789.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maronga, B., and Coauthors, 2015: The Parallelized Large-Eddy Simulation Model (PALM) version 4.0 for atmospheric and oceanic flows: Model formulation, recent developments, and future perspectives. Geosci. Model Dev., 8, 25152551, https://doi.org/10.5194/gmd-8-2515-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McNider, R. T., 1982: A note on velocity fluctuations in drainage flows. J. Atmos. Sci., 39, 16581660, https://doi.org/10.1175/1520-0469(1982)039<1658:ANOVFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., and J. C. Wyngaard, 1988: Spectral analysis of large-eddy simulations of the convective boundary layer. J. Atmos. Sci., 45, 35733587, https://doi.org/10.1175/1520-0469(1988)045<3573:SAOLES>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monti, P., H. J. S. Fernando, M. Princevac, T. A. Chan, W. C. Kowalewski, and E. R. Pardyjak, 2002: Observations of flow and turbulence in the nocturnal boundary layer over a slope. J. Atmos. Sci., 59, 25132534, https://doi.org/10.1175/1520-0469(2002)059<2513:OOFATI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pardyjak, E. R., H. J. S. Fernando, J. C. R. Hunt, A. A. Grachev, and J. Anderson, 2009: A case study of the development of nocturnal slope flows in a wide open valley and associated air quality implications. Meteor. Z., 18, 85100, https://doi.org/10.1127/0941-2948/2009/362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patton, E., and G. G. Katul, 2009: Turbulent pressure and velocity perturbations induced by gentle hills covered with sparse and dense canopies. Bound.-Layer Meteor., 133, 189217, https://doi.org/10.1007/s10546-009-9427-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poggi, D., and G. G. Katul, 2007: An experimental investigation of the mean momentum budget inside dense canopies on narrow gentle hilly terrain. Agric. For. Meteor., 144, 113, https://doi.org/10.1016/j.agrformet.2007.01.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poggi, D., G. G. Katul, J. J. Finnigan, and S. E. Belcher, 2008: Analytical models for the mean flow inside dense canopies on gentle hilly terrain. Quart. J. Roy. Meteor. Soc., 134, 10951112, https://doi.org/10.1002/qj.276.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raupach, M. R., J. J. Finnigan, and Y. Brunet, 1996: Coherent eddies and turbulence in vegetation canopies: The mixing length analogy. Bound.-Layer Meteor., 78, 351382, https://doi.org/10.1007/BF00120941.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenblum, M., and A. Pikovsky, 2001: Detecting direction of coupling in interacting oscillators. Phys. Rev., 64E, 045202, https://doi.org/10.1103/PhysRevE.64.045202.

    • Search Google Scholar
    • Export Citation
  • Ross, A. N., 2008: Large-eddy simulations of flow over forested ridges. Bound.-Layer Meteor., 128, 5976, https://doi.org/10.1007/s10546-008-9278-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ross, A. N., and S. B. Vosper, 2005: Neutral turbulent flow over forested hills. Quart. J. Roy. Meteor. Soc., 131, 18411862, https://doi.org/10.1256/qj.04.129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ross, A. N., and I. N. Harman, 2015: The impact of source distribution on scalar transport over forested hills. Bound.-Layer Meteor., 156, 211230, https://doi.org/10.1007/s10546-015-0029-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, R. H., and U. Schumann, 1992: Large-eddy simulation of turbulent flow above and within a forest. Bound.-Layer Meteor., 61, 4764, https://doi.org/10.1007/BF02033994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, R. H., and E. G. Patton, 2003: Canopy element influences on resolved- and subgrid-scale energy within a large-eddy simulation. Agric. For. Meteor., 115, 517, https://doi.org/10.1016/S0168-1923(02)00165-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strogatz, S. H., 1994: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Perseus Books, 498 pp.

  • Thomas, C. K., 2011: Variability of sub-canopy flow, temperature, and horizontal advection in moderately complex terrain. Bound.-Layer Meteor., 139, 6181, https://doi.org/10.1007/s10546-010-9578-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vickers, D., J. Irvine, J. Martin, and B. Law, 2012: Nocturnal subcanopy flow regimes and missing carbon dioxide. Agric. For. Meteor., 152, 101108, https://doi.org/10.1016/j.agrformet.2011.09.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, T., 2004: Large-eddy simulation of coherent turbulence structures associated with scalar ramps over plant canopies. Bound.-Layer Meteor., 112, 307341, https://doi.org/10.1023/B:BOUN.0000027912.84492.54.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., S. Zhong, W. J. Shaw, J. M. Hubbe, X. Bian, and J. Mittelstadt, 2001: Cold pools in the Columbia basin. Wea. Forecasting, 16, 432447, https://doi.org/10.1175/1520-0434(2001)016<0432:CPITCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yi, C., 2009: Instability analysis of terrain-induced canopy flows. J. Atmos. Sci., 66, 21342141, https://doi.org/10.1175/2009JAS3005.1.

  • Yue, W., C. Meneveau, M. B. Parlange, W. Zhu, H. S. Kang, and J. Katz, 2008: Turbulent kinetic energy budgets in a model canopy: Comparisons between LES and wind-tunnel experiments. Environ. Fluid Mech., 8, 7395, https://doi.org/10.1007/s10652-007-9049-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1354 1101 41
PDF Downloads 145 30 11