• Barlage, M., and et al. , 2010: Noah land surface model modifications to improve snowpack prediction in the Colorado Rocky Mountains. J. Geophys. Res., 115, D22101, https://doi.org/10.1029/2009JD013470.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., and et al. , 2008: Human-induced changes in the hydrology of the western United States. Science, 319, 10801083, https://doi.org/10.1126/science.1152538.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112, 677691, https://doi.org/10.1002/qj.49711247307.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and M. Miller, 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets. Quart. J. Roy. Meteor. Soc., 112, 693709, https://doi.org/10.1002/qj.49711247308.

    • Search Google Scholar
    • Export Citation
  • Bossert, J. E., and W. R. Cotton, 1994a: Regional-scale flows in mountainous terrain. Part I: A numerical and observational comparison. Mon. Wea. Rev., 122, 14491471, https://doi.org/10.1175/1520-0493(1994)122<1449:RSFIMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bossert, J. E., and W. R. Cotton, 1994b: Regional-scale flows in mountainous terrain. Part II: Simplified numerical experiments. Mon. Wea. Rev., 122, 14721489, https://doi.org/10.1175/1520-0493(1994)122<1472:RSFIMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carbone, R., and J. Tuttle, 2008: Rainfall occurrence in the U.S. warm season: The diurnal cycle. J. Climate, 21, 41324146, https://doi.org/10.1175/2008JCLI2275.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chase, T. N., R. A. Pielke, T. G. Kittel, J. S. Baron, and T. J. Stohlgren, 1999: Potential impacts on Colorado Rocky Mountain weather due to land use changes on the adjacent Great Plains. J. Geophys. Res., 104, 16 67316 690, https://doi.org/10.1029/1999JD900118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and et al. , 2014: Modeling seasonal snowpack evolution in the complex terrain and forested Colorado Headwaters region: A model intercomparison study. J. Geophys. Res. Atmos., 119, 13 79513 819, https://doi.org/10.1002/2014JD022167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clements, N., M. P. Hannigan, S. L. Miller, J. L. Peel, and J. B. Milford, 2016: Comparisons of urban and rural PM10–2.5 and PM2.5 mass concentrations and semi-volatile fractions in northeastern Colorado. Atmos. Chem. Phys., 16, 74697484, https://doi.org/10.5194/acp-16-7469-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and et al. , 2004: Description of the NCAR Community Atmosphere Model (CAM 3.0). NCAR Tech. Note NCAR/TN-464+STR, 214 pp., https://doi.org/10.5065/D63N21CH.

    • Crossref
    • Export Citation
  • de Wekker, S. F., S. Zhong, J. D. Fast, and C. D. Whiteman, 1998: A numerical study of the thermally driven plain-to-basin wind over idealized basin topographies. J. Appl. Meteor., 37, 606622, https://doi.org/10.1175/1520-0450(1998)037<060>:ANSOTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M., K. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, https://doi.org/10.1029/2002JD003296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., and G. M. Flato, 1999: Enhanced climate change and its detection over the Rocky Mountains. J. Climate, 12, 230243, https://doi.org/10.1175/1520-0442-12.1.230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., J. A. Vano, C. Zhu, and D. P. Lettenmaier, 2011: Evaluating climate change over the Colorado River basin using regional climate models. J. Geophys. Res., 116, D13104, https://doi.org/10.1029/2010JD015278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., J. W. Hurrell, M. R. Marinucci, and M. Beniston, 1997: Elevation dependency of the surface climate change signal: A model study. J. Climate, 10, 288296, https://doi.org/10.1175/1520-0442(1997)010<0288:EDOTSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, A., 2004: The role of surface albedo feedback in climate. J. Climate, 17, 15501568, https://doi.org/10.1175/1520-0442(2004)017<1550:TROSAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and G. J. Hakim, 2012: An Introduction to Dynamic Meteorology. International Geophysics Series, Vol. 88, Academic Press, 552 pp.

  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horel, J., and et al. , 2002: MesoWest: Cooperative mesonets in the western United States. Bull. Amer. Meteor. Soc., 83, 211225, https://doi.org/10.1175/1520-0477(2002)083<0211:MCMITW>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain-Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Springer, 165–170.

    • Crossref
    • Export Citation
  • Kotlarski, S., T. Bosshard, D. Lüthi, P. Pall, and C. Schär, 2012: Elevation gradients of European climate change in the regional climate model COSMO-CLM. Climatic Change, 112, 189215, https://doi.org/10.1007/s10584-011-0195-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Letcher, T., 2017: The impact snow albedo feedback over mountain regions as examined through high-resolution regional climate change experiments over the Rocky Mountains. Ph.D. thesis, University at Albany, State University of New York, 166 pp.

  • Letcher, T., and J. R. Minder, 2015: Characterization of the simulated regional snow albedo feedback using a regional climate model over complex terrain. J. Climate, 28, 75767595, https://doi.org/10.1175/JCLI-D-15-0166.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Letcher, T., and J. R. Minder, 2016: The simulated response of diurnal mountain winds to regionally enhanced warming caused by the snow albedo feedback. J. Atmos. Sci., 74, 4967, https://doi.org/10.1175/JAS-D-16-0158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and et al. , 2016: Continental-scale convection-permitting modeling of the current and future climate of North America. Climate Dyn., 49, 7195, https://doi.org/10.1007/s00382-016-3327-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livneh, B., Y. Xia, K. E. Mitchell, M. B. Ek, and D. P. Lettenmaier, 2010: Noah LSM snow model diagnostics and enhancements. J. Hydrometeor., 11, 721738, https://doi.org/10.1175/2009JHM1174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and et al. , 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, https://doi.org/10.1175/BAMS-87-3-343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and et al. , 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ookouchi, Y., M. Segal, R. Kessler, and R. Pielke, 1984: Evaluation of soil moisture effects on the generation and modification of mesoscale circulations. Mon. Wea. Rev., 112, 22812292, https://doi.org/10.1175/1520-0493(1984)112<2281:EOSMEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Painter, T. H., K. Rittger, C. McKenzie, P. Slaughter, R. E. Davis, and J. Dozier, 2009: Retrieval of subpixel snow covered area, grain size, and albedo from MODIS. Remote Sens. Environ., 113, 868879, https://doi.org/10.1016/j.rse.2009.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., and et al. , 2008: Attribution of declining western U.S. snowpack to human effects. J. Climate, 21, 64256444, https://doi.org/10.1175/2008JCLI2405.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piña, A. J., 2013: Transport of pollutants from eastern Colorado into the Rocky Mountains via upslope winds. M.S. thesis, Dept. of Atmospheric Science, Colorado State University, 37 pp.

  • Rasmussen, R., and et al. , 2011: High-resolution coupled climate runoff simulations of seasonal snowfall over Colorado: A process study of current and warmer climate. J. Climate, 24, 30153048, https://doi.org/10.1175/2010JCLI3985.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and et al. , 2014: Climate change impacts on the water balance of the Colorado Headwaters: High-resolution regional climate model simulations. J. Hydrometeor., 15, 10911116, https://doi.org/10.1175/JHM-D-13-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauscher, S. A., J. S. Pal, N. S. Diffenbaugh, and M. M. Benedetti, 2008: Future changes in snowmelt-driven runoff timing over the western US. Geophys. Res. Lett., 35, L16703, https://doi.org/10.1029/2008GL034424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salathé, E. P., R. Steed, C. F. Mass, and P. H. Zahn, 2008: A high-resolution climate model for the U.S. Pacific Northwest: Mesoscale feedbacks and local responses to climate change. J. Climate, 21, 57085726, https://doi.org/10.1175/2008JCLI2090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schär, C., C. Frei, D. Lüthi, and H. C. Davies, 1996: Surrogate climate-change scenarios for regional climate models. Geophys. Res. Lett., 23, 669672, https://doi.org/10.1029/96GL00265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Segal, M., J. Garratt, R. Pielke, and Z. Ye, 1991: Scaling and numerical model evaluation of snow-cover effects on the generation and modification of daytime mesoscale circulations. J. Atmos. Sci., 48, 10241042, https://doi.org/10.1175/1520-0469(1991)048<1024:SANMEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W., and et al. , 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Steyn, D. G., S. F. De Wekker, M. Kossmann, and A. Martilli, 2013: Boundary layers and air quality in mountainous terrain. Mountain Weather Research and Forecasting, Springer, 261–289.

    • Crossref
    • Export Citation
  • Sullivan, J. T., and et al. , 2016: Quantifying the contribution of thermally driven recirculation to a high-ozone event along the Colorado Front Range using lidar. J. Geophys. Res. Atmos., 121, 10 37710 390, https://doi.org/10.1002/2016JD025229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542, https://doi.org/10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toth, J. J., and R. H. Johnson, 1985: Summer surface flow characteristics over northeast Colorado. Mon. Wea. Rev., 113, 14581469, https://doi.org/10.1175/1520-0493(1985)113<1458:SSFCON>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tucker, D. F., and N. A. Crook, 1999: The generation of a mesoscale convective system from mountain convection. Mon. Wea. Rev., 127, 12591273, https://doi.org/10.1175/1520-0493(1999)127<1259:TGOAMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viviroli, D., and et al. , 2011: Climate change and mountain water resources: Overview and recommendations for research, management and policy. Hydrol. Earth Syst. Sci., 15, 471504, https://doi.org/10.5194/hess-15-471-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weissmann, M., F. J. Braun, L. Gantner, G. J. Mayr, S. Rahm, and O. Reitebuch, 2005: The alpine mountain–plain circulation: Airborne Doppler lidar measurements and numerical simulations. Mon. Wea. Rev., 133, 30953109, https://doi.org/10.1175/MWR3012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolfe, A. P., J. S. Baron, and R. J. Cornett, 2001: Anthropogenic nitrogen deposition induces rapid ecological changes in alpine lakes of the Colorado Front Range (USA). J. Paleolimnol., 25, 17, https://doi.org/10.1023/A:1008129509322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolyn, P. G., and T. B. Mckee, 1994: The mountain–plains circulation east of a 2-km-high north–south barrier. Mon. Wea. Rev., 122, 14901508, https://doi.org/10.1175/1520-0493(1994)122<1490:TMPCEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Z.-L., and et al. , 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins. J. Geophys. Res., 116, D12110, https://doi.org/10.1029/2010JD015140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zardi, D., and C. D. Whiteman, 2013: Diurnal mountain wind systems. Mountain Weather Research and Forecasting, Springer, 35–119.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 63 63 11
PDF Downloads 41 41 10

The Simulated Impact of the Snow Albedo Feedback on the Large-Scale Mountain–Plain Circulation East of the Colorado Rocky Mountains

View More View Less
  • 1 University at Albany, State University of New York, Albany, New York
© Get Permissions
Restricted access

Abstract

The Front Range mountain–plain circulation (FRMC) is a large-scale diurnally driven wind system that occurs east of the Colorado Rocky Mountains in the United States and affects the weather both in the Rocky Mountains and Great Plains. As the climate warms, the snow albedo feedback will amplify the warming response in the Rocky Mountains during the spring, increasing the thermal contrast that drives the FRMC. In this study, the authors perform a 7-yr pseudo–global warming (PGW) regional climate change experiment along with an idealized PGW “fixed albedo” experiment to test the sensitivity of the FRMC to the snow albedo feedback (SAF). The authors find a mean increase in the springtime FRMC strength in the PGW experiment that is primarily driven by the snow albedo feedback. Furthermore, interannual variability of changes in FRMC strength is strongly influenced by interannual variability in the SAF. An additional case study experiment configured with a much higher resolution is performed to examine the finescale details of how the SAF and the FRMC interact. This experiment includes a passive tracer to investigate subsequent impacts on pollution transport. The case study reveals that loss of snow cover causes an increase in the strength of the FRMC. Advection by the strengthened FRMC increases the concentration of tracers emitted over the Great Plains in the boundary layer over the Front Range mountains.

Current affiliation: Terrestrial and Cryospheric Sciences Branch, Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Theodore Letcher, tletcher@albany.edu

Abstract

The Front Range mountain–plain circulation (FRMC) is a large-scale diurnally driven wind system that occurs east of the Colorado Rocky Mountains in the United States and affects the weather both in the Rocky Mountains and Great Plains. As the climate warms, the snow albedo feedback will amplify the warming response in the Rocky Mountains during the spring, increasing the thermal contrast that drives the FRMC. In this study, the authors perform a 7-yr pseudo–global warming (PGW) regional climate change experiment along with an idealized PGW “fixed albedo” experiment to test the sensitivity of the FRMC to the snow albedo feedback (SAF). The authors find a mean increase in the springtime FRMC strength in the PGW experiment that is primarily driven by the snow albedo feedback. Furthermore, interannual variability of changes in FRMC strength is strongly influenced by interannual variability in the SAF. An additional case study experiment configured with a much higher resolution is performed to examine the finescale details of how the SAF and the FRMC interact. This experiment includes a passive tracer to investigate subsequent impacts on pollution transport. The case study reveals that loss of snow cover causes an increase in the strength of the FRMC. Advection by the strengthened FRMC increases the concentration of tracers emitted over the Great Plains in the boundary layer over the Front Range mountains.

Current affiliation: Terrestrial and Cryospheric Sciences Branch, Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Theodore Letcher, tletcher@albany.edu
Save