• Bao, X., F. Zhang, and J. Sun, 2011: Diurnal variations of warm-season precipitation east of the Tibetan Plateau over China. Mon. Wea. Rev., 139, 27902810, https://doi.org/10.1175/MWR-D-11-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bartels, D. L., and R. A. Maddox, 1991: Midlevel cyclonic vortices generated by mesoscale convective systems. Mon. Wea. Rev., 119, 104118, https://doi.org/10.1175/1520-0493(1991)119<0104:MCVGBM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., and F. Sanders, 1981: The Johnstown flood of July 1977: A long-lived convective system. J. Atmos. Sci., 38, 16161642, https://doi.org/10.1175/1520-0469(1981)038<1616:TJFOJA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., 1990: Evolution and structure of the 6-7 May 1985 mesoscale convective system and associated vortex. Mon. Wea. Rev., 118, 109127, https://doi.org/10.1175/1520-0493(1990)118<0109:EASOTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, J. M., 1979: Mesoscale unsaturated downdrafts driver by rainfall evaporation: A numerical study. J. Atmos. Sci., 36, 313338, https://doi.org/10.1175/1520-0469(1979)036<0313:MUDDBR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G. T.-J., 1983: Observational aspects of Mei-yu phenomena in subtropical China. J. Meteor. Soc. Japan, 61, 306312, https://doi.org/10.2151/jmsj1965.61.2_306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M., and Y. G. Zheng, 2004: Vorticity budget investigation of a simulated long-lived mesoscale vortex in South China. Adv. Atmos. Sci., 21, 928940, https://doi.org/10.1007/BF02915595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. S., and W. M. Frank, 1993: A numerical study of the genesis of extratropical convective mesovortices. Part I: Evolution and dynamics. J. Atmos. Sci., 50, 24012426, https://doi.org/10.1175/1520-0469(1993)050<2401:ANSOTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and M. L. Weisman, 1994: Balanced dynamics of mesoscale vortices produced in simulated convective systems. J. Atmos. Sci., 51, 20052030, https://doi.org/10.1175/1520-0469(1994)051<2005:BDOMVP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and S. B. Trier, 2002: Cloud-resolving simulations of mesoscale vortex intensification and its effect on a serial mesoscale convective system. Mon. Wea. Rev., 130, 28392858, https://doi.org/10.1175/1520-0493(2002)130<2839:CRSOMV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and S. B. Trier, 2007: Mesoscale convective vortices observed during BAMEX. Part I: Kinematic and thermodynamic structure. Mon. Wea. Rev., 135, 20292049, https://doi.org/10.1175/MWR3398.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and T. J. Galarneau, 2009: The vertical structure of mesoscale convective vortices. J. Atmos. Sci., 66, 686704, https://doi.org/10.1175/2008JAS2819.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y. H., 1993: Study on the Lasting Heavy Rainfalls over the Yangtze–Huaihe River Basin in 1991 (in Chinese). Chinese Meteorological Press, 255 pp.

  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., J. D. Murphy, and J. S. Kain, 1994: Warm core vortex amplification over land. J. Atmos. Sci., 51, 17801807, https://doi.org/10.1175/1520-0469(1994)051<1780:WCVAOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geng, B., and H. Yamada, 2007: Diurnal variations of the Meiyu/Baiu rain belt. SOLA, 3, 6164, https://doi.org/10.2151/sola.2007-016.

  • Grell, G. A., and D. Dévényi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, https://doi.org/10.1029/2002GL015311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., and M. E. McIntyre, 1987: On the evolution of vorticity and potential vorticity in the presence of diabatic heating and frictional or other forces. J. Atmos. Sci., 44, 828841, https://doi.org/10.1175/1520-0469(1987)044<0828:OTEOVA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF Single-Moment 6-Class Microphysics Scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120, https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jorgensen, D., and B. F. Smull, 1993: Mesovortex circulations seen by airborne Doppler radar within a bow echo mesoscale convective system. Bull. Amer. Meteor. Soc., 74, 21462157, https://doi.org/10.1175/1520-0477(1993)074<2146:MCSBAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirk, J. R., 2007: A phase-plot method for diagnosing vorticity concentration mechanisms in mesoscale convective vortices. Mon. Wea. Rev., 135, 801820, https://doi.org/10.1175/MWR3322.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melhauser, C., and F. Zhang, 2014: Diurnal radiation cycle impact on the pregenesis environment of Hurricane Karl (2010). J. Atmos. Sci., 71, 12411259, https://doi.org/10.1175/JAS-D-13-0116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morales, A., R. S. Schumacher, and S. M. Kreidenweis, 2015: Mesoscale vortex development during extreme precipitation: Colorado, September 2013. Mon. Wea. Rev., 143, 49434962, https://doi.org/10.1175/MWR-D-15-0086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ninomiya, K., 2000: Large- and meso-α-scale characteristics of Meiyu/Baiu front associated with intense rainfalls in 1-10 July 1991. J. Meteor. Soc. Japan, 78, 141157, https://doi.org/10.2151/jmsj1965.78.2_141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noh, Y., W. G. Cheon, and S. Raasch, 2001: The improvement of the K-profile model for the PBL using LES. Preprints, Int. Workshop of Next Generation NWP Models, Seoul, South Korea, Laboratory for Atmospheric Modeling Research, 6566.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and H. Jiang, 1990: A theory for long-lived convective systems. J. Atmos. Sci., 47, 30673077, https://doi.org/10.1175/1520-0469(1990)047<3067:ATFLLM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., and J. M. Fritsch, 2001: Surface cyclogenesis from convectively driven amplification of midlevel mesoscale convective vortices. Mon. Wea. Rev., 129, 605637, https://doi.org/10.1175/1520-0493(2001)129<0605:SCFCDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and R. H. Johnson, 2008: Mesoscale processes contributing to extreme rainfall in a midlatitude warm-season flash flood. Mon. Wea. Rev., 136, 39643986, https://doi.org/10.1175/2008MWR2471.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., M. L. Weisman, and J. B. Klemp, 1994: Three-dimensional evolution of simulated long-lived squall lines. J. Atmos. Sci., 51, 25632584, https://doi.org/10.1175/1520-0469(1994)051<2563:TDEOSL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp., https://doi.org/10.5065/D6DZ069T.

    • Crossref
    • Export Citation
  • Sun, J., and F. Zhang, 2012: Impacts of mountain–plains solenoid on diurnal variations of rainfalls along the mei-yu front over the East China plains. Mon. Wea. Rev., 140, 379397, https://doi.org/10.1175/MWR-D-11-00041.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., S. X. Zhao, G. K. Xu, and Q. T. Meng, 2010: Study on a mesoscale convective vortex causing heavy rainfall during the Mei-yu season in 2003. Adv. Atmos. Sci., 27, 11931209, https://doi.org/10.1007/s00376-009-9156-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, A. J., 1985: Diagnosis of balanced vortex structure using potential vorticity. J. Atmos. Sci., 42, 397406, https://doi.org/10.1175/1520-0469(1985)042<0397:DOBVSU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., C. A. Davis, and J. D. Tuttle, 2000: Long-lived mesoconvective vortices and their environment. Part I: Observations from the central United States during the 1998 warm season. Mon. Wea. Rev., 128, 33763395, https://doi.org/10.1175/1520-0493(2000)128<3376:LLMVAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., C. A. Davis, D. A. Ahijevych, M. L. Weisman, and G. H. Bryan, 2006: Mechanisms supporting long-lived episodes of propagating nocturnal convection within a 7-day WRF model simulation. J. Atmos. Sci., 63, 24372461, https://doi.org/10.1175/JAS3768.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tripoli, G. J., and W. R. Cotton, 1989: Numerical study of an observed orogenic mesoscale convective system. Part 2: Analysis of governing dynamics. Mon. Wea. Rev., 117, 305328, https://doi.org/10.1175/1520-0493(1989)117<0305:NSOAOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., M. Xue, Y. Wang, and H. Huang, 2017: Mechanisms of secondary convection within a Mei-Yu frontal mesoscale convective system in eastern China. J. Geophys. Res. Atmos., 122, 4764, https://doi.org/10.1002/2016JD026017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, C. K., B. J.-D. Jou, and B. F. Smull, 1999: Formative stage of a long-lived mesoscale vortex observed by airborne Doppler radar. Mon. Wea. Rev., 127, 838857, https://doi.org/10.1175/1520-0493(1999)127<0838:FSOALL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., 1992: The formation of a cooling-induced mesovortex in the trailing stratiform region of a midlatitude squall line. Mon. Wea. Rev., 120, 27632785, https://doi.org/10.1175/1520-0493(1992)120<2763:TFOACI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X. L., S. Y. Tao, and S. L. Zhang, 2004: Three types of heavy rainstorms associated with Mei-yu front (in Chinese). Chin. J. Atmos. Sci., 28, 187205.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y. C., J. H. Sun, and S. M. Fu, 2014: Impacts of diurnal variation of mountain-plain solenoid circulations on precipitation and vortices east of the Tibetan Plateau during the Mei-yu season. Adv. Atmos. Sci., 31, 139153, https://doi.org/10.1007/s00376-013-2052-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, S. X., Z. Y. Tao, J. H. Sun, and N. F. Bei, 2004: Study on Mechanism of Formation and Development of Heavy Rainfalls on Mei-Yu Front in Yangtze River (in Chinese). China Meteorological Press, 282 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 82 82 15
PDF Downloads 183 183 12

Diurnal Evolution and Structure of Long-Lived Mesoscale Convective Vortices along the Mei-Yu Front over the East China Plains

View More View Less
  • 1 Key Laboratory of Cloud-Precipitation Physics and Severe Storms (LACS), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China, and Department of Meteorology and Atmospheric Science, and Center for Advanced Data Assimilation and Predictability Techniques, The Pennsylvania State University, University Park, Pennsylvania
  • | 2 Department of Meteorology and Atmospheric Science, and Center for Advanced Data Assimilation and Predictability Techniques, The Pennsylvania State University, University Park, Pennsylvania
  • | 3 National Center for Atmospheric Research, Boulder, Colorado
  • | 4 Key Laboratory of Cloud-Precipitation Physics and Severe Storms (LACS), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
© Get Permissions
Restricted access

Abstract

The structure and diurnal evolution of long-lived, eastward-propagating mesoscale convective vortices (MCVs) along typical summertime mei-yu fronts over the east China plains are investigated through composite analysis of a 30-day semi-idealized simulation. The simulation uses lateral boundary conditions that vary only diurnally in time using analyses of recurring MCV events during 1–10 July 2007. Hence, the behavior of convection and vorticity follows a closely repeating diurnal cycle for each day during the simulation. Assisted by the eastward extension of enhanced vorticity anomalies from the Sichuan basin, the incipient MCV forms in the morning hours over the immediate lee (east) of the central China mountain ranges (stage 1). From local afternoon to early evening, as the MCV moves over the plains, convection weakens in the daytime downward branch of the mountain–plains solenoid. This allows the upper-level and lower-level portions of the vortex to partially decouple, and for convection to shift to the east-southeast side of the surface vortex (stage 2). Immediately after sunset, convection reinvigorates above the low-level MCV center as a result of moistening and destabilization from a combination of radiative forcing and an intensified low-level jet. This intensifies the MCV to maturity (stage 3). The mature MCV eventually evolves into an occluding subsynoptic cyclone with strong convection across all sectors of the low-level vorticity center during the subsequent day’s morning hours along the east China coastal plains before it moves offshore (stage 4).

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Fuqing Zhang, fzhang@psu.edu

Abstract

The structure and diurnal evolution of long-lived, eastward-propagating mesoscale convective vortices (MCVs) along typical summertime mei-yu fronts over the east China plains are investigated through composite analysis of a 30-day semi-idealized simulation. The simulation uses lateral boundary conditions that vary only diurnally in time using analyses of recurring MCV events during 1–10 July 2007. Hence, the behavior of convection and vorticity follows a closely repeating diurnal cycle for each day during the simulation. Assisted by the eastward extension of enhanced vorticity anomalies from the Sichuan basin, the incipient MCV forms in the morning hours over the immediate lee (east) of the central China mountain ranges (stage 1). From local afternoon to early evening, as the MCV moves over the plains, convection weakens in the daytime downward branch of the mountain–plains solenoid. This allows the upper-level and lower-level portions of the vortex to partially decouple, and for convection to shift to the east-southeast side of the surface vortex (stage 2). Immediately after sunset, convection reinvigorates above the low-level MCV center as a result of moistening and destabilization from a combination of radiative forcing and an intensified low-level jet. This intensifies the MCV to maturity (stage 3). The mature MCV eventually evolves into an occluding subsynoptic cyclone with strong convection across all sectors of the low-level vorticity center during the subsequent day’s morning hours along the east China coastal plains before it moves offshore (stage 4).

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Fuqing Zhang, fzhang@psu.edu
Save