Quantifying Isentropic Mixing Linked to Rossby Wave Breaking in a Modified Lagrangian Coordinate

Chengji Liu Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Chengji Liu in
Current site
Google Scholar
PubMed
Close
and
Elizabeth A. Barnes Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Elizabeth A. Barnes in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Isentropic mixing is an important process for the distribution of chemical constituents in the mid- to high latitudes. A modified Lagrangian framework is applied to quantify the mixing associated with two distinct types of Rossby wave breaking (i.e., cyclonic and anticyclonic). In idealized numerical simulations, cyclonic wave breaking (CWB) exhibits either comparable or stronger mixing than anticyclonic wave breaking (AWB). Although the frequencies of AWB and CWB both have robust relationships with the jet position, this asymmetry leads to CWB dominating mixing variability related to the jet shifting. In particular, when the jet shifts poleward the mixing strength decreases in areas of the midlatitude troposphere and also decreases on the poleward side of the jet. This is due to decreasing CWB occurrence with a poleward shift of the jet. Across the tropopause, equatorward of the jet, where AWB mostly occurs and CWB rarely occurs, the mixing strength increases as AWB occurs more frequently with a poleward shift of the jet. The dynamical relationship above is expected to be relevant both for internal climate variability, such as the El Niño–Southern Oscillation (ENSO) and the annular modes, and for future climate change that may drive changes in the jet position.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chengji Liu, cjliu@atmos.colostate.edu

Abstract

Isentropic mixing is an important process for the distribution of chemical constituents in the mid- to high latitudes. A modified Lagrangian framework is applied to quantify the mixing associated with two distinct types of Rossby wave breaking (i.e., cyclonic and anticyclonic). In idealized numerical simulations, cyclonic wave breaking (CWB) exhibits either comparable or stronger mixing than anticyclonic wave breaking (AWB). Although the frequencies of AWB and CWB both have robust relationships with the jet position, this asymmetry leads to CWB dominating mixing variability related to the jet shifting. In particular, when the jet shifts poleward the mixing strength decreases in areas of the midlatitude troposphere and also decreases on the poleward side of the jet. This is due to decreasing CWB occurrence with a poleward shift of the jet. Across the tropopause, equatorward of the jet, where AWB mostly occurs and CWB rarely occurs, the mixing strength increases as AWB occurs more frequently with a poleward shift of the jet. The dynamical relationship above is expected to be relevant both for internal climate variability, such as the El Niño–Southern Oscillation (ENSO) and the annular modes, and for future climate change that may drive changes in the jet position.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chengji Liu, cjliu@atmos.colostate.edu
Save
  • Abalos, M., B. Legras, and E. Shuckburgh, 2016: Interannual variability in effective diffusivity in the upper troposphere/lower stratosphere from reanalysis data. Quart. J. Roy. Meteor. Soc., 142, 18471861, https://doi.org/10.1002/qj.2779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Appenzeller, C., and H. Davies, 1992: Structure of stratospheric intrusions into the troposphere. Nature, 358, 570572, https://doi.org/10.1038/358570a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Appenzeller, C., H. Davies, and W. Norton, 1996: Fragmentation of stratospheric intrusions. J. Geophys. Res., 101, 14351456, https://doi.org/10.1029/95JD02674.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and D. L. Hartmann, 2010: Influence of eddy-driven jet latitude on North Atlantic jet persistence and blocking frequency in CMIP3 integrations. Geophys. Res. Lett., 37, L23802, https://doi.org/10.1029/2010GL045700.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and D. L. Hartmann, 2012: Detection of Rossby wave breaking and its response to shifts of the midlatitude jet with climate change. J. Geophys. Res., 117, D09117, https://doi.org/10.1029/2012JD017469.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and L. Polvani, 2013: Response of the midlatitude jets, and of their variability, to increased greenhouse gases in the CMIP5 models. J. Climate, 26, 71177135, https://doi.org/10.1175/JCLI-D-12-00536.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barrie, L. A., 1986: Arctic air pollution: An overview of current knowledge. Atmos. Environ., 20, 643663, https://doi.org/10.1016/0004-6981(86)90180-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butchart, N., and E. E. Remsberg, 1986: The area of the stratospheric polar vortex as a diagnostic for tracer transport on an isentropic surface. J. Atmos. Sci., 43, 13191339, https://doi.org/10.1175/1520-0469(1986)043<1319:TAOTSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butler, A. H., D. W. Thompson, and R. Heikes, 2010: The steady-state atmospheric circulation response to climate change–like thermal forcings in a simple general circulation model. J. Climate, 23, 34743496, https://doi.org/10.1175/2010JCLI3228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., and A. Plumb, 2014: Effective isentropic diffusivity of tropospheric transport. J. Atmos. Sci., 71, 34993520, https://doi.org/10.1175/JAS-D-13-0333.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, P., 1995: Isentropic cross-tropopause mass exchange in the extratropics. J. Geophys. Res., 100, 16 66116 673, https://doi.org/10.1029/95JD01264.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, W. Y., and H. M. Van den Dool, 1999: Significant change of extratropical natural variability and potential predictability associated with the El Nino/Southern Oscillation. Tellus, 51A, 790802, https://doi.org/10.3402/tellusa.v51i5.14493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eckhardt, S., A. Stohl, H. Wernli, P. James, C. Forster, and N. Spichtinger, 2004: A 15-year climatology of warm conveyor belts. J. Climate, 17, 218237, https://doi.org/10.1175/1520-0442(2004)017<0218:AYCOWC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edouard, S., R. Vautard, and G. Brunet, 1997: On the maintenance of potential vorticity in isentropic coordinates. Quart. J. Roy. Meteor. Soc., 123, 20692094, https://doi.org/10.1002/qj.49712354314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haynes, P., and E. Shuckburgh, 2000a: Effective diffusivity as a diagnostic of atmospheric transport: 1. Stratosphere. J. Geophys. Res., 105, 22 77722 794, https://doi.org/10.1029/2000JD900093.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haynes, P., and E. Shuckburgh, 2000b: Effective diffusivity as a diagnostic of atmospheric transport: 2. Troposphere and lower stratosphere. J. Geophys. Res., 105, 22 79522 810, https://doi.org/10.1029/2000JD900092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 18251830, https://doi.org/10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., P. H. Haynes, M. E. McIntyre, A. R. Douglass, R. B. Rood, and L. Pfister, 1995: Stratosphere-troposphere exchange. Rev. Geophys., 33, 403439, https://doi.org/10.1029/95RG02097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., 1991: Towards a PV-θ view of the general circulation. Tellus, 43A, 2735, https://doi.org/10.3402/tellusa.v43i4.11936.

    • Search Google Scholar
    • Export Citation
  • Jing, P., D. Cunnold, H. Wang, and E. Yang, 2004: Isentropic cross-tropopause ozone transport in the Northern Hemisphere. J. Atmos. Sci., 61, 10681078, https://doi.org/10.1175/1520-0469(2004)061<1068:ICOTIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leibensperger, E. M., and R. A. Plumb, 2014: Effective diffusivity in baroclinic flow. J. Atmos. Sci., 71, 972984, https://doi.org/10.1175/JAS-D-13-0217.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lelieveld, J., and F. J. Dentener, 2000: What controls tropospheric ozone? J. Geophys. Res., 105, 35313551, https://doi.org/10.1029/1999JD901011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lippmann, M., 1989: Health effects of ozone: A critical review. J. Air Waste Manage. Assoc., 39, 672695, https://doi.org/10.1080/08940630.1989.10466554.

    • Search Google Scholar
    • Export Citation
  • Liu, C., and E. A. Barnes, 2015: Extreme moisture transport into the Arctic linked to Rossby wave breaking. J. Geophys. Res. Atmos., 120, 37743788, https://doi.org/10.1002/2014JD022796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and E. A. Barnes, 2018: Synoptic formation of double tropopauses. J. Geophys. Res. Atmos., 123, 693707, https://doi.org/10.1002/2017JD027941.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., X. Ren, and X. Yang, 2014: Mean flow-storm track relationship and Rossby wave breaking in two types of El-Niño. Adv. Atmos. Sci., 31, 197210, https://doi.org/10.1007/s00376-013-2297-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madonna, E., H. Wernli, H. Joos, and O. Martius, 2014: Warm conveyor belts in the ERA-Interim dataset (1979–2010). Part I: Climatology and potential vorticity evolution. J. Climate, 27, 326, https://doi.org/10.1175/JCLI-D-12-00720.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McIntyre, M., 1980: Towards a Lagrangian-mean description of stratospheric circulations and chemical transports. Philos. Trans. Roy. Soc. London, 296, 129148, https://doi.org/10.1098/rsta.1980.0160.

    • Search Google Scholar
    • Export Citation
  • Nakamura, N., 1995: Modified Lagrangian-mean diagnostics of the stratospheric polar vortices. Part I: Formulation and analysis of GFDL SKYHI GCM. J. Atmos. Sci., 52, 20962108, https://doi.org/10.1175/1520-0469(1995)052<2096:MLMDOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, N., 1996: Two-dimensional mixing, edge formation, and permeability diagnosed in an area coordinate. J. Atmos. Sci., 53, 15241537, https://doi.org/10.1175/1520-0469(1996)053<1524:TDMEFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, N., 2004: Quantifying asymmetric wave breaking and two-way transport. J. Atmos. Sci., 61, 27352748, https://doi.org/10.1175/JAS3296.1.

  • Nakamura, N., and D. Zhu, 2010: Finite-amplitude wave activity and diffusive flux of potential vorticity in eddy–mean flow interaction. J. Atmos. Sci., 67, 27012716, https://doi.org/10.1175/2010JAS3432.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orbe, C., P. A. Newman, D. W. Waugh, M. Holzer, L. D. Oman, F. Li, and L. M. Polvani, 2015: Air-mass origin in the Arctic. Part II: Response to increases in greenhouse gases. J. Climate, 28, 91059120, https://doi.org/10.1175/JCLI-D-15-0296.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, L. L., and Coauthors, 2009: Tropospheric intrusions associated with the secondary tropopause. J. Geophys. Res., 114, D10302, https://doi.org/10.1029/2008JD011374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plumb, R., and J. Mahlman, 1987: The zonally averaged transport characteristics of the GFDL general circulation/transport model. J. Atmos. Sci., 44, 298327, https://doi.org/10.1175/1520-0469(1987)044<0298:TZATCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., and J. G. Esler, 2007: Transport and mixing of chemical air masses in idealized baroclinic life cycles. J. Geophys. Res., 112, D23102, https://doi.org/10.1029/2007JD008555.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raatz, W. E., and G. E. Shaw, 1984: Long-range tropospheric transport of pollution aerosols into the Alaskan arctic. J. Climate Appl. Meteor., 23, 10521064, https://doi.org/10.1175/1520-0450(1984)023<1052:LRTTOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., D. J. Seidel, and L. L. Pan, 2007: Observational characteristics of double tropopauses. J. Geophys. Res., 112, D07309, https://doi.org/10.1029/2006JD007904.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and J. M. Wallace, 1983: Meteorological aspects of the El Niño/Southern Oscillation. Science, 222, 11951202, https://doi.org/10.1126/science.222.4629.1195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, X., Y. Zhang, and Y. Xiang, 2008: Connections between wintertime jet stream variability, oceanic surface heating, and transient eddy activity in the North Pacific. J. Geophys. Res., 113, D21119, https://doi.org/10.1029/2007JD009464.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rivière, G., 2011: A dynamical interpretation of the poleward shift of the jet streams in global warming scenarios. J. Atmos. Sci., 68, 12531272, https://doi.org/10.1175/2011JAS3641.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, M., 1980: Turbulent mixing within tropopause folds as a mechanism for the exchange of chemical constituents between the stratosphere and troposphere. J. Atmos. Sci., 37, 9941004, https://doi.org/10.1175/1520-0469(1980)037<0994:TMWTFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, N., and E. Austin, 1930: The Physical Processes of Weather. Vol. 3, Manual of Meteorology, Cambridge University Press, 474 pp.

  • Škerlak, B., M. Sprenger, and H. Wernli, 2014: A global climatology of stratosphere-troposphere exchange using the ERA-Interim data set from 1979 to 2011. Atmos. Chem. Phys., 14, 913937, https://doi.org/10.5194/acp-14-913-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sprenger, M., and H. Wernli, 2003: A northern hemispheric climatology of cross-tropopause exchange for the ERA15 time period (1979–1993). J. Geophys. Res., 108, 8521, doi:10.1029/2002JD002636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strong, C., and G. Magnusdottir, 2008: Tropospheric Rossby wave breaking and the NAO/NAM. J. Atmos. Sci., 65, 28612876, https://doi.org/10.1175/2008JAS2632.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W., and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296, 895899, https://doi.org/10.1126/science.1069270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorncroft, C., B. Hoskins, and M. McIntyre, 1993: Two paradigms of baroclinic-wave life-cycle behaviour. Quart. J. Roy. Meteor. Soc., 119, 1755, https://doi.org/10.1002/qj.49711950903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trepte, C. R., R. E. Veiga, and M. P. McCormick, 1993: The poleward dispersal of Mount Pinatubo volcanic aerosol. J. Geophys. Res., 98, 18 56318 573, https://doi.org/10.1029/93JD01362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walker, C. C., and T. Schneider, 2006: Eddy influences on Hadley circulations: Simulations with an idealized GCM. J. Atmos. Sci., 63, 33333350, https://doi.org/10.1175/JAS3821.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., and L. M. Polvani, 2011: Double tropopause formation in idealized baroclinic life cycles: The key role of an initial tropopause inversion layer. J. Geophys. Res., 116, D05108, https://doi.org/10.1029/2010JD015118.

    • Search Google Scholar
    • Export Citation
  • Woollings, T., B. Hoskins, M. Blackburn, and P. Berrisford, 2008: A new Rossby wave-breaking interpretation of the North Atlantic Oscillation. J. Atmos. Sci., 65, 609626, https://doi.org/10.1175/2007JAS2347.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woollings, T., A. Hannachi, and B. Hoskins, 2010: Variability of the North Atlantic eddy-driven jet stream. Quart. J. Roy. Meteor. Soc., 136, 856868, https://doi.org/10.1002/qj.625.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1001 559 29
PDF Downloads 253 72 5