Scaling and Similarity of the Anisotropic Coherent Eddies in Near-Surface Atmospheric Turbulence

Khaled Ghannam Nicholas School of the Environment, Duke University, Durham, North Carolina

Search for other papers by Khaled Ghannam in
Current site
Google Scholar
PubMed
Close
,
Gabriel G. Katul Nicholas School of the Environment, Duke University, Durham, North Carolina

Search for other papers by Gabriel G. Katul in
Current site
Google Scholar
PubMed
Close
,
Elie Bou-Zeid Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by Elie Bou-Zeid in
Current site
Google Scholar
PubMed
Close
,
Tobias Gerken Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana

Search for other papers by Tobias Gerken in
Current site
Google Scholar
PubMed
Close
, and
Marcelo Chamecki Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Marcelo Chamecki in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The low-wavenumber regime of the spectrum of turbulence commensurate with Townsend’s “attached” eddies is investigated here for the near-neutral atmospheric surface layer (ASL) and the roughness sublayer (RSL) above vegetation canopies. The central thesis corroborates the significance of the imbalance between local production and dissipation of turbulence kinetic energy (TKE) and canopy shear in challenging the classical distance-from-the-wall scaling of canonical turbulent boundary layers. Using five experimental datasets (two vegetation canopy RSL flows, two ASL flows, and one open-channel experiment), this paper explores (i) the existence of a low-wavenumber k−1 scaling law in the (wind) velocity spectra or, equivalently, a logarithmic scaling ln(r) in the velocity structure functions; (ii) phenomenological aspects of these anisotropic scales as a departure from homogeneous and isotropic scales; and (iii) the collapse of experimental data when plotted with different similarity coordinates. The results show that the extent of the k−1 and/or ln(r) scaling for the longitudinal velocity is shorter in the RSL above canopies than in the ASL because of smaller scale separation in the former. Conversely, these scaling laws are absent in the vertical velocity spectra except at large distances from the wall. The analysis reveals that the statistics of the velocity differences Δu and Δw approach a Gaussian-like behavior at large scales and that these eddies are responsible for momentum/energy production corroborated by large positive (negative) excursions in Δu accompanied by negative (positive) ones in Δw. A length scale based on TKE dissipation collapses the velocity structure functions at different heights better than the inertial length scale.

Current affiliation: Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Khaled Ghannam, kghannam@princeton.edu

Abstract

The low-wavenumber regime of the spectrum of turbulence commensurate with Townsend’s “attached” eddies is investigated here for the near-neutral atmospheric surface layer (ASL) and the roughness sublayer (RSL) above vegetation canopies. The central thesis corroborates the significance of the imbalance between local production and dissipation of turbulence kinetic energy (TKE) and canopy shear in challenging the classical distance-from-the-wall scaling of canonical turbulent boundary layers. Using five experimental datasets (two vegetation canopy RSL flows, two ASL flows, and one open-channel experiment), this paper explores (i) the existence of a low-wavenumber k−1 scaling law in the (wind) velocity spectra or, equivalently, a logarithmic scaling ln(r) in the velocity structure functions; (ii) phenomenological aspects of these anisotropic scales as a departure from homogeneous and isotropic scales; and (iii) the collapse of experimental data when plotted with different similarity coordinates. The results show that the extent of the k−1 and/or ln(r) scaling for the longitudinal velocity is shorter in the RSL above canopies than in the ASL because of smaller scale separation in the former. Conversely, these scaling laws are absent in the vertical velocity spectra except at large distances from the wall. The analysis reveals that the statistics of the velocity differences Δu and Δw approach a Gaussian-like behavior at large scales and that these eddies are responsible for momentum/energy production corroborated by large positive (negative) excursions in Δu accompanied by negative (positive) ones in Δw. A length scale based on TKE dissipation collapses the velocity structure functions at different heights better than the inertial length scale.

Current affiliation: Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Khaled Ghannam, kghannam@princeton.edu
Save
  • Anselmet, F., Y. Gagne, E. Hopfinger, and R. Antonia, 1984: High-order velocity structure functions in turbulent shear flows. J. Fluid Mech., 140, 6389, https://doi.org/10.1017/S0022112084000513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balakumar, B. J., and R. J. Adrian, 2007: Large- and very-large-scale motions in channel and boundary-layer flows. Philos. Trans. Roy. Soc. London, 365A, 665681, https://doi.org/10.1098/rsta.2006.1940.

    • Search Google Scholar
    • Export Citation
  • Banerjee, T., and G. G. Katul, 2013: Logarithmic scaling in the longitudinal velocity variance explained by a spectral budget. Phys. Fluids, 25, 125106, https://doi.org/10.1063/1.4837876.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banerjee, T., G. G. Katul, S. Salesky, and M. Chamecki, 2015: Revisiting the formulations for the longitudinal velocity variance in the unstable atmospheric surface layer. Quart. J. Roy. Meteor. Soc., 141, 16991711, https://doi.org/10.1002/qj.2472.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bou-Zeid, E., N. Vercauteren, M. B. Parlange, and C. Meneveau, 2008: Scale dependence of subgrid-scale model coefficients: An a priori study. Phys. Fluids, 20, 115 106, https://doi.org/10.1063/1.2992192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Busch, N. E., and H. A. Panofsky, 1968: Recent spectra of atmospheric turbulence. Quart. J. Roy. Meteor. Soc., 94, 132148, https://doi.org/10.1002/qj.49709440003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chamecki, M., 2013: Persistence of velocity fluctuations in non-Gaussian turbulence within and above plant canopies. Phys. Fluids, 25, 115110, https://doi.org/10.1063/1.4832955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chamecki, M., and N. L. Dias, 2004: The local isotropy hypothesis and the turbulent kinetic energy dissipation rate in the atmospheric surface layer. Quart. J. Roy. Meteor. Soc., 130, 27332752, https://doi.org/10.1256/qj.03.155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chamecki, M., N. L. Dias, S. T. Salesky, and Y. Pan, 2017: Scaling laws for the longitudinal structure function in the atmospheric surface layer. J. Atmos. Sci., 74, 11271147, https://doi.org/10.1175/JAS-D-16-0228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charuchittipan, D., and J. D. Wilson, 2009: Turbulent kinetic energy dissipation in the surface layer. Bound.-Layer Meteor., 132, 193204, https://doi.org/10.1007/s10546-009-9399-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chung, D., I. Marusic, J. Monty, M. Vallikivi, and A. Smits, 2015: On the universality of inertial energy in the log layer of turbulent boundary layer and pipe flows. Exp. Fluids, 56, 141, https://doi.org/10.1007/s00348-015-1994-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davidson, P., and P.-Å. Krogstad, 2009: A simple model for the streamwise fluctuations in the log-law region of a boundary layer. Phys. Fluids, 21, 055105, https://doi.org/10.1063/1.3140075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davidson, P., and P.-Å. Krogstad, 2014: A universal scaling for low-order structure functions in the log-law region of smooth- and rough-wall boundary layers. J. Fluid Mech., 752, 140156, https://doi.org/10.1017/jfm.2014.286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davidson, P., T. Nickels, and P.-Å. Krogstad, 2006: The logarithmic structure function law in wall-layer turbulence. J. Fluid Mech., 550, 5160, https://doi.org/10.1017/S0022112005008001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Del Álamo, J. C., J. Jiménez, P. Zandonade, and R. D. Moser, 2004: Scaling of the energy spectra of turbulent channels. J. Fluid Mech., 500, 135144, https://doi.org/10.1017/S002211200300733X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Silva, C., I. Marusic, J. Woodcock, and C. Meneveau, 2015: Scaling of second- and higher-order structure functions in turbulent boundary layers. J. Fluid Mech., 769, 654686, https://doi.org/10.1017/jfm.2015.122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drobinski, P., P. Carlotti, R. K. Newsom, R. M. Banta, R. C. Foster, and J.-L. Redelsperger, 2004: The structure of the near-neutral atmospheric surface layer. J. Atmos. Sci., 61, 699714, https://doi.org/10.1175/1520-0469(2004)061<0699:TSOTNA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drobinski, P., P. Carlotti, J.-L. Redelsperger, V. Masson, R. M. Banta, and R. K. Newsom, 2007: Numerical and experimental investigation of the neutral atmospheric surface layer. J. Atmos. Sci., 64, 137156, https://doi.org/10.1175/JAS3831.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finnigan, J., 2000: Turbulence in plant canopies. Annu. Rev. Fluid Mech., 32, 519571, https://doi.org/10.1146/annurev.fluid.32.1.519.

  • Freire, L. S., and Coauthors, 2017: Turbulent mixing and removal of ozone within an Amazon rainforest canopy. J. Geophys. Res. Atmos., 122, 27912811, https://doi.org/10.1002/2016JD026009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuentes, J. D., and Coauthors, 2016: Linking meteorology, turbulence, and air chemistry in the Amazon rain forest. Bull. Amer. Meteor. Soc., 97, 23292342, https://doi.org/10.1175/BAMS-D-15-00152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerken, T., and Coauthors, 2018: Investigating the mechanisms responsible for the lack of surface energy balance closure in a central Amazonian tropical rainforest. Agric. For. Meteor., https://doi.org/10.1016/j.agrformet.2017.03.023, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghannam, K., T. Duman, S. T. Salesky, M. Chamecki, and G. Katul, 2017: The non-local character of turbulence asymmetry in the convective atmospheric boundary layer. Quart. J. Roy. Meteor. Soc., 143, 494507, https://doi.org/10.1002/qj.2937.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gleicher, S. C., M. Chamecki, S. A. Isard, Y. Pan, and G. G. Katul, 2014: Interpreting three-dimensional spore concentration measurements and escape fraction in a crop canopy using a coupled Eulerian–Lagrangian stochastic model. Agric. For. Meteor., 194, 118131, https://doi.org/10.1016/j.agrformet.2014.03.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guala, M., M. Metzger, and B. J. McKeon, 2011: Interactions within the turbulent boundary layer at high Reynolds number. J. Fluid Mech., 666, 573604, https://doi.org/10.1017/S0022112010004544.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Högström, U., J. Hunt, and A.-S. Smedman, 2002: Theory and measurements for turbulence spectra and variances in the atmospheric neutral surface layer. Bound.-Layer Meteor., 103, 101124, https://doi.org/10.1023/A:1014579828712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsieh, C.-I., and G. G. Katul, 1997: Dissipation methods, Taylor’s hypothesis, and stability correction functions in the atmospheric surface layer. J. Geophys. Res., 102, 16 39116 405, https://doi.org/10.1029/97JD00200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, J., and P. Carlotti, 2001: Statistical structure at the wall of the high Reynolds number turbulent boundary layer. Flow Turbul. Combust., 66, 453475, https://doi.org/10.1023/A:1013519021030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hutchins, N., K. Chauhan, I. Marusic, J. Monty, and J. Klewicki, 2012: Towards reconciling the large-scale structure of turbulent boundary layers in the atmosphere and laboratory. Bound.-Layer Meteor., 145, 273306, https://doi.org/10.1007/s10546-012-9735-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez, J., 2012: Cascades in wall-bounded turbulence. Annu. Rev. Fluid Mech., 44, 2745, https://doi.org/10.1146/annurev-fluid-120710-101039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., J. C. Wyngaard, Y. Izumi, and O. R. Coté, 1972: Spectral characteristics of surface-layer turbulence. Quart. J. Roy. Meteor. Soc., 98, 563589, https://doi.org/10.1002/qj.49709841707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katul, G., and C.-R. Chu, 1998: A theoretical and experimental investigation of energy-containing scales in the dynamic sublayer of boundary-layer flows. Bound.-Layer Meteor., 86, 279312, https://doi.org/10.1023/A:1000657014845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katul, G., C.-I. Hsieh, and J. Sigmon, 1997: Energy-inertial scale interactions for velocity and temperature in the unstable atmospheric surface layer. Bound.-Layer Meteor., 82, 4980, https://doi.org/10.1023/A:1000178707511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katul, G., A. Porporato, and V. Nikora, 2012: Existence of k−1 power-law scaling in the equilibrium regions of wall-bounded turbulence explained by Heisenberg’s eddy viscosity. Phys. Rev., 86E, 066311, https://doi.org/10.1103/PhysRevE.86.066311.

    • Search Google Scholar
    • Export Citation
  • Katul, G., C. Manes, A. Porporato, E. Bou-Zeid, and M. Chamecki, 2015: Bottlenecks in turbulent kinetic energy spectra predicted from structure function inflections using the von Kármán-Howarth equation. Phys. Rev., 92E, 033009, https://doi.org/10.1103/PhysRevE.92.033009.

    • Search Google Scholar
    • Export Citation
  • Katul, G., T. Banerjee, D. Cava, M. Germano, and A. Porporato, 2016: Generalized logarithmic scaling for high-order moments of the longitudinal velocity component explained by the random sweeping decorrelation hypothesis. Phys. Fluids, 28, 095104, https://doi.org/10.1063/1.4961963.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolmogorov, A. N., 1941: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR, 30, 299303.

    • Search Google Scholar
    • Export Citation
  • Kunkel, G. J., and I. Marusic, 2006: Study of the near-wall-turbulent region of the high-Reynolds-number boundary layer using an atmospheric flow. J. Fluid Mech., 548, 375402, https://doi.org/10.1017/S0022112005007780.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, D., G. G. Katul, and P. Gentine, 2016: The k−1 scaling of air temperature spectra in atmospheric surface layer flows. Quart. J. Roy. Meteor. Soc., 142, 496505, https://doi.org/10.1002/qj.2668.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marusic, I., B. J. McKeon, P. A. Monkewitz, H. M. Nagib, A. J. Smits, and K. R. Sreenivasan, 2010: Wall-bounded turbulent flows at high Reynolds numbers: Recent advances and key issues. Phys. Fluids, 22, 065103, https://doi.org/10.1063/1.3453711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marusic, I., J. P. Monty, M. Hultmark, and A. J. Smits, 2013: On the logarithmic region in wall turbulence. J. Fluid Mech., 716, R3, https://doi.org/10.1017/jfm.2012.511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meneveau, C., and I. Marusic, 2013: Generalized logarithmic law for high-order moments in turbulent boundary layers. J. Fluid Mech., 719, R1, https://doi.org/10.1017/jfm.2013.61.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Metzger, M. M., and J. C. Klewicki, 2001: A comparative study of near-wall turbulence in high and low Reynolds number boundary layers. Phys. Fluids, 13, 692701, https://doi.org/10.1063/1.1344894.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monin, A., and A. M. Yaglom, 1975: Statistical Fluid Mechanics: Mechanics of Turbulence. Vol. 2. MIT Press, 874 pp.

  • Nikora, V., 1999: Origin of the “−1” spectral law in wall-bounded turbulence. Phys. Rev. Lett., 83, 734736, https://doi.org/10.1103/PhysRevLett.83.734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Obukhov, A., 1949: The local structure of atmospheric turbulence. Dokl. Akad. Nauk SSSR, 67, 643646.

  • Pan, Y., and M. Chamecki, 2016: A scaling law for the shear-production range of second-order structure functions. J. Fluid Mech., 801, 459474, https://doi.org/10.1017/jfm.2016.427.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, Y., M. Chamecki, and H. M. Nepf, 2016: Estimating the instantaneous drag–wind relationship for a horizontally homogeneous canopy. Bound.-Layer Meteor., 160, 6382, https://doi.org/10.1007/s10546-016-0137-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perry, A., and C. Abell, 1977: Asymptotic similarity of turbulence structures in smooth- and rough-walled pipes. J. Fluid Mech., 79, 785799, https://doi.org/10.1017/S0022112077000457.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perry, A., S. Henbest, and M. Chong, 1986: A theoretical and experimental study of wall turbulence. J. Fluid Mech., 165, 163199, https://doi.org/10.1017/S002211208600304X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poggi, D., A. Porporato, L. Ridolfi, J. Albertson, and G. Katul, 2004: The effect of vegetation density on canopy sub-layer turbulence. Bound.-Layer Meteor., 111, 565587, https://doi.org/10.1023/B:BOUN.0000016576.05621.73.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prandtl, L., 1925: Bericht über untersuchungen zur ausgebildeten turbulenz. Z. Angew. Math. Mech., 5, 136139.

  • Raupach, M. R., J. J. Finnigan, and Y. Brunet, 1996: Coherent eddies and turbulence in vegetation canopies: The mixing-layer analogy. Bound.-Layer Meteor., 78, 351382, https://doi.org/10.1007/BF00120941.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salesky, S. T., and M. Chamecki, 2012: Random errors in turbulence measurements in the atmospheric surface layer: Implications for Monin–Obukhov similarity theory. J. Atmos. Sci., 69, 37003714, https://doi.org/10.1175/JAS-D-12-096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salesky, S. T., M. Chamecki, and E. Bou-Zeid, 2017: On the nature of the transition between roll and cellular organization in the convective boundary layer. Bound.-Layer Meteor., 163, 4168, https://doi.org/10.1007/s10546-016-0220-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sreenivasan, K. R., and R. Antonia, 1997: The phenomenology of small-scale turbulence. Annu. Rev. Fluid Mech., 29, 435472, https://doi.org/10.1146/annurev.fluid.29.1.435.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, R. J., M. Wilczek, and C. Meneveau, 2014: Large-eddy simulation study of the logarithmic law for second- and higher-order moments in turbulent wall-bounded flow. J. Fluid Mech., 757, 888907, https://doi.org/10.1017/jfm.2014.510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1938: The spectrum of turbulence. Proc. Roy. Soc. London, 164A, 476490, https://doi.org/10.1098/rspa.1938.0032.

  • Tchen, C.-M., 1953: On the spectrum of energy in turbulent shear flow. J. Res. Natl. Bur. Stand. (U.S.), 50, 5162, https://doi.org/10.6028/jres.050.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Townsend, A. A., 1961: Equilibrium layers and wall turbulence. J. Fluid Mech., 11, 97120, https://doi.org/10.1017/S0022112061000883.

  • Townsend, A. A., 1976: The Structure of Turbulent Shear Flow. Cambridge University Press, 429 pp.

  • UCAR–NCAR Earth Observing Laboratory, 1990: Integrated Surface Flux System. NCAR Earth Observing Laboratory, accessed 15 January 2017, https://doi.org/10.5065/D6ZC80XJ.

    • Crossref
    • Export Citation
  • Vallikivi, M., B. Ganapathisubramani, and A. Smits, 2015: Spectral scaling in boundary layers and pipes at very high Reynolds numbers. J. Fluid Mech., 771, 303326, https://doi.org/10.1017/jfm.2015.181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vercauteren, N., E. Bou-Zeid, M. B. Parlange, U. Lemmin, H. Huwald, J. Selker, and C. Meneveau, 2008: Subgrid-scale dynamics of water vapour, heat, and momentum over a lake. Bound.-Layer Meteor., 128, 205228, https://doi.org/10.1007/s10546-008-9287-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Kármán, T., 1930: Mechanische änlichkeit und turbulenz. Nachr. Ges. Wiss. Göettingen Math.-Phys. Kl., 68, 5876.

  • von Kármán, T., and L. Howarth, 1938: On the statistical theory of isotropic turbulence. Proc. Roy. Soc. London, 164A, 192215, https://doi.org/10.1098/rspa.1938.0013.

    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., and S. F. Clifford, 1977: Taylor’s hypothesis and high-frequency turbulence spectra. J. Atmos. Sci., 34, 922929, https://doi.org/10.1175/1520-0469(1977)034<0922:THAHTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1114 436 32
PDF Downloads 695 151 21