• Ahn, M.-S., D. Kim, K. Sperber, I.-S. Kang, E. Maloney, D. Waliser, and H. Hendon, 2017: MJO simulation in CMIP5 climate models: MJO skill metrics and process-oriented diagnosis. Climate Dyn., 49, 40234045, https://doi.org/10.1007/s00382-017-3558-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balachandran, N. K., D. Rind, P. Lonergan, and D. T. Shindell, 1999: Effects of solar cycle variability on the lower stratosphere and the troposphere. J. Geophys. Res., 104, 27 32127 339, https://doi.org/10.1029/1999JD900924.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bevington, P. R., 1969: Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill, 336 pp.

  • Bretherton, C. S., M. Widmann, V. P. Dymnikov, J. M. Wallace, and I. Bladé, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 19902009, https://doi.org/10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calvo, N., R. Garcia, W. Randel, and D. Marsh, 2010: Dynamical mechanism for the increase in tropical upwelling in the lowermost tropical stratosphere during warm ENSO events. J. Atmos. Sci., 67, 23312340, https://doi.org/10.1175/2010JAS3433.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chandra, S., 1985: Solar-induced oscillations in the stratosphere: A myth or reality? J. Geophys. Res., 90, 23312339, https://doi.org/10.1029/JD090iD01p02331.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiodo, G., D. R. Marsh, R. Garcia-Herrera, N. Calvo, and J. Garcia, 2014: On the detection of the solar signal in the tropical stratosphere. Atmos. Chem. Phys., 14, 52515269, https://doi.org/10.5194/acp-14-5251-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cochrane, D., and D. H. Orcutt, 1949: Application of least squares regression to relationships containing auto-correlated error terms. J. Ameri. Stat. Assoc., 44, 3261, https://doi.org/10.1080/01621459.1949.10483290.

    • Search Google Scholar
    • Export Citation
  • Collimore, C. C., D. W. Martin, M. H. Hitchman, A. Huesmann, and D. E. Waliser, 2003: On the relationship between the QBO and tropical deep convection. J. Climate, 16, 25522568, https://doi.org/10.1175/1520-0442(2003)016<2552:OTRBTQ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, C. A., N. P. Klingaman, and S. J. Woolnough, 2015: Atmosphere-ocean coupled processes in the Madden-Julian oscillation. Rev. Geophys., 53, 10991154, https://doi.org/10.1002/2014RG000478.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., S. Solomon, D. Folini, S. Davis, and C. Cagnazzo, 2013: Influence of tropical tropopause layer cooling on Atlantic hurricane activity. J. Climate, 26, 22882301, https://doi.org/10.1175/JCLI-D-12-00242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garny, H., G. E. Bodeker, and M. Dameris, 2007: Trends and variability in stratospheric mixing: 1979–2005. Atmos. Chem. Phys., 7, 56115624, https://doi.org/10.5194/acp-7-5611-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgetta, M. A., L. Bengtsson, and K. Arpe, 1999: An investigation of QBO signals in the East Asian and Indian monsoon in GCM experiments. Climate Dyn., 15, 435450, https://doi.org/10.1007/s003820050292.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, L. J., and et al. , 2010: Solar influences on climate. Rev. Geophys., 48, RG4001, https://doi.org/10.1029/2009RG000282.

  • Haigh, J. D., 1994: The role of stratospheric ozone in modulating the solar radiative forcing of climate. Nature, 370, 544546, https://doi.org/10.1038/370544a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haigh, J. D., 2003: The effects of solar variability on the Earth’s climate. Philos. Trans. Roy. Soc. London, 361A, 95111, https://doi.org/10.1098/rsta.2002.1111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haigh, J. D., M. Blackburn, and R. Day, 2005: The response of tropospheric circulation to perturbations in lower-stratospheric temperature. J. Climate, 18, 36723685, https://doi.org/10.1175/JCLI3472.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heath, D. F., and B. M. Schlesinger, 1986: The Mg 280-nm doublet as a monitor of changes in solar ultraviolet irradiance. J. Geophys. Res., 91, 86728682, https://doi.org/10.1029/JD091iD08p08672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., P. H. Haynes, M. E. McIntyre, A. R. Douglass, R. B. Rood, and L. Pfister, 1995: Stratosphere-troposphere exchange. Rev. Geophys., 33, 403439, https://doi.org/10.1029/95RG02097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hood, L. L., 1986: Coupled stratospheric ozone and temperature responses to short-term changes in solar ultraviolet flux: An analysis of Nimbus 7 SBUV and SAMS data. J. Geophys. Res., 91, 52645276, https://doi.org/10.1029/JD091iD04p05264.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hood, L. L., 2003: Thermal response of the tropical tropopause region to solar ultraviolet variations. Geophys. Res. Lett., 30, 2215, https://doi.org/10.1029/2003GL018364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hood, L. L., 2004: Effects of solar UV variability on the stratosphere. Solar Variability and Its Effect on Climate, Geophys. Monogr., Vol. 141, Amer. Geophys. Union, 283–304.

    • Crossref
    • Export Citation
  • Hood, L. L., 2016: Lagged response of tropical tropospheric temperature to solar ultraviolet variations on intraseasonal time scales. Geophys. Res. Lett., 43, 40664075, https://doi.org/10.1002/2016GL068855.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hood, L. L., 2017: QBO/solar modulation of the boreal winter Madden-Julian oscillation: A prediction for the coming solar minimum. Geophys. Res. Lett., 44, 38493857, https://doi.org/10.1002/2017GL072832.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hood, L. L., and J. Jirikowic, 1991: Stratospheric dynamical effects of solar ultraviolet variations: Evidence from zonal mean ozone and temperature data. J. Geophys. Res., 96, 75657577, https://doi.org/10.1029/91JD00228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hood, L. L., and B. E. Soukharev, 2003: Quasi-decadal variability of the tropical lower stratosphere: The role of extratropical wave forcing. J. Atmos. Sci., 60, 23892403, https://doi.org/10.1175/1520-0469(2003)060<2389:QVOTTL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hood, L. L., and B. E. Soukharev, 2012: The lower-stratospheric response to 11-yr solar forcing: Coupling to the troposphere–ocean response. J. Atmos. Sci., 69, 18411864, https://doi.org/10.1175/JAS-D-11-086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hood, L. L., J. L. Jirikowic, and J. P. McCormack, 1993: The stratospheric quasi-decadal variation: Influence of long-term solar ultraviolet variations. J. Atmos. Sci., 50, 39413958, https://doi.org/10.1175/1520-0469(1993)050<3941:QDVOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hood, L. L., and et al. , 2015: Solar signals in CMIP-5 simulations: The ozone response. Quart. J. Roy. Meteor. Soc., 141, 26702689, https://doi.org/10.1002/qj.2553.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813829, https://doi.org/10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hung, M.-P., J.-L. Lin, W. Wang, D. Kim, T. Shinoda, and S. J. Weaver, 2013: MJO and convectively coupled equatorial waves simulated by CMIP5 climate models. J. Climate, 26, 61856214, https://doi.org/10.1175/JCLI-D-12-00541.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., K. H. Straub, G. C. Reid, and K. S. Gage, 2001: Aspects of interannual and intraseasonal variability of the tropopause and lower stratosphere. Quart. J. Roy. Meteor. Soc., 127, 19611983, https://doi.org/10.1002/qj.49712757606.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., K. H. Straub, and P. T. Haertel, 2005: Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci., 62, 27902809, https://doi.org/10.1175/JAS3520.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., J. Dias, K. H. Straub, M. C. Wheeler, S. N. Tulich, K. Kikuchi, K. M. Weickmann, and M. J. Ventrice, 2014: A comparison of OLR and circulation-based indices for tracking the MJO. Mon. Wea. Rev., 142, 16971715, https://doi.org/10.1175/MWR-D-13-00301.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kodera, K., and Y. Kuroda, 2002: Dynamical response to the solar cycle. J. Geophys. Res., 107, 4749, https://doi.org/10.1029/2002JD002224.

  • Kuchar, A., W. Ball, E. Rozanov, A. Stenke, L. Revell, J. Miksovsky, P. Pisoft, and T. Peter, 2017: On the aliasing of the solar cycle in the lower stratospheric tropical temperature. J. Geophys. Res. Atmos., 122, 90769093, https://doi.org/10.1002/2017JD026948.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lean, J., 2000: A decadal solar effect in the evolution of the sun’s spectral irradiance since the Maunder Minimum. Geophys. Res. Lett., 27, 24252428, https://doi.org/10.1029/2000GL000043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liess, S., and M. A. Geller, 2012: On the relationship between QBO and distribution of tropical deep convection. J. Geophys. Res., 117, D03108, https://doi.org/10.1029/2011JD016317.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122, 814837, https://doi.org/10.1175/1520-0493(1994)122<0814:OOTDTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsh, D. R., and R. Garcia, 2007: Attribution of decadal variability in lower-stratospheric tropical ozone. Geophys. Res. Lett., 34, L21807, https://doi.org/10.1029/2007GL030935.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, A. G., H. H. Hendon, S.-W. Son, and Y. Lim, 2017: Impact of the quasi-biennial oscillation on predictability of the Madden–Julian oscillation. Climate Dyn., 49, 13651377, https://doi.org/10.1007/s00382-016-3392-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthes, K., U. Langematz, L. L. Gray, K. Kodera, and K. Labitzke, 2004: Improved 11-year solar signal in the Freie Universität Berlin Climate Middle Atmosphere Model (FUB-CMAM). J. Geophys. Res., 109, D06101, https://doi.org/10.1029/2003JD004012.

    • Search Google Scholar
    • Export Citation
  • Maycock, A. C., K. Matthes, S. Tegtmeier, R. Thiéblemont, and L. Hood, 2016: The representation of solar cycle signals in stratospheric ozone—Part 1: A comparison of recently updated satellite observations. Atmos. Chem. Phys., 16, 10 02110 043, https://doi.org/10.5194/acp-16-10021-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maycock, A. C., and et al. , 2018: The representation of solar cycle signals in stratospheric ozone. Part II: Analysis of global models. Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-477, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G., J. Arblaster, G. Branstator, and H. van Loon, 2008: A coupled air–sea response mechanism to solar forcing in the Pacific region. J. Climate, 21, 28832897, https://doi.org/10.1175/2007JCLI1776.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Misios, S., and et al. , 2016: Solar signals in CMIP-5 simulations: Effects of atmosphere–ocean coupling. Quart. J. Roy. Meteor. Soc., 142, 928941, https://doi.org/10.1002/qj.2695.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. M., and et al. , 2015: Solar signals in CMIP-5 simulations: The stratospheric pathway. Quart. J. Roy. Meteor. Soc., 141, 23902403, https://doi.org/10.1002/qj.2530.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nie, J., and A. H. Sobel, 2015: Responses of tropical deep convection to the QBO: Cloud-resolving simulations. J. Atmos. Sci., 72, 36253638, https://doi.org/10.1175/JAS-D-15-0035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nishimoto, E., and S. Yoden, 2017: Influence of the stratospheric quasi-biennial oscillation on the Madden–Julian oscillation during austral summer. J. Atmos. Sci., 74, 11051125, https://doi.org/10.1175/JAS-D-16-0205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., and R. C. Bell, 1982: A model of the quasi-biennial oscillation on an equatorial beta-plane. Quart. J. Roy. Meteor. Soc., 108, 335352, https://doi.org/10.1002/qj.49710845604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., and J. Eluszkiewicz, 1999: The Brewer–Dobson circulation: Dynamics of the tropical upwelling. J. Atmos. Sci., 56, 868890, https://doi.org/10.1175/1520-0469(1999)056<0868:TBDCDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, A. M., Jr., and J. Xu, 2011: Possible solar forcing of interannual and decadal stratospheric planetary wave variability in the Northern Hemisphere: An observational study. J. Atmos. Sol.-Terr. Phys., 73, 825838, https://doi.org/10.1016/j.jastp.2011.02.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shindell, D., D. Rind, N. Balachandran, J. Lean, and P. Lonergan, 1999: Solar cycle variability, ozone, and climate. Science, 284, 305308, https://doi.org/10.1126/science.284.5412.305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., M. Blackburn, and J. D. Haigh, 2009: The role of eddies in driving the tropospheric response to stratospheric heating perturbations. J. Atmos. Sci., 66, 13471365, https://doi.org/10.1175/2008JAS2758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Son, S.-W., Y. Lim, C. Yoo, H. Hendon, and J. Kim, 2017: Stratospheric control of the Madden–Julian oscillation. J. Climate, 30, 19091922, https://doi.org/10.1175/JCLI-D-16-0620.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tiao, G., and et al. , 1990: Effects of autocorrelation and temporal sampling schemes on estimates of trend and spatial correlation. J. Geophys. Res., 95, 20 50720 517, https://doi.org/10.1029/JD095iD12p20507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, https://doi.org/10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoo, C., and S.-W. Son, 2016: Modulation of the boreal wintertime Madden-Julian oscillation by the stratospheric quasi-biennial oscillation. Geophys. Res. Lett., 43, 13921398, https://doi.org/10.1002/2016GL067762.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden-Julian oscillation. Rev. Geophys., 43, RG2003, https://doi.org/10.1029/2004RG000158.

  • Zhang, C., 2013: Madden–Julian oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94, 18491870, https://doi.org/10.1175/BAMS-D-12-00026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, J., and K.-K. Tung, 2013: Observed tropospheric temperature response to 11-yr solar cycle and what it reveals about mechanisms. J. Atmos. Sci., 70, 914, https://doi.org/10.1175/JAS-D-12-0214.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 36 36 4
PDF Downloads 35 35 3

Short-Term Solar Modulation of the Madden–Julian Climate Oscillation

View More View Less
  • 1 Lunar and Planetary Laboratory, The University of Arizona, Tucson, Arizona
© Get Permissions
Restricted access

Abstract

Normalized occurrence rates of daily Madden–Julian oscillation (MJO) events are calculated as a function of phase lag relative to peaks and minima in solar ultraviolet flux occurring on the solar rotational time scale (~27 days). All MJO phases and four solar maximum periods are considered (1979–83, 1989–93, 1999–2003, and 2011–15). Corresponding daily static stabilities in the tropical lower stratosphere (70–100 hPa) are calculated from ERA-Interim data and are averaged over the warm pool region. The statistical significance of occurrence-rate changes following UV peaks and minima is assessed using a Monte Carlo method. When MJO events with amplitudes greater than about 2 are considered during the December–May period (about 15% of those days), significant reductions of MJO occurrence rates and associated increases in static stability in the tropical lower stratosphere are obtained 1–7 days following solar UV peaks. Consistently, cross-correlation analyses of high-pass-filtered daily MJO amplitudes and solar UV flux during the same seasonal period produce significant negative correlations near and following solar UV peaks. Conversely, mean occurrence rates are increased and lower-stratospheric static stabilities are decreased following solar UV minima. The reductions (increases) in occurrence rate following solar UV peaks (minima) are largest when the stratospheric quasi-biennial oscillation is in its easterly phase. Little or no dependence of the solar modulation on the phase of El Niño–Southern Oscillation is obtained.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-17-0265.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lon L. Hood, lon@lpl.arizona.edu

Abstract

Normalized occurrence rates of daily Madden–Julian oscillation (MJO) events are calculated as a function of phase lag relative to peaks and minima in solar ultraviolet flux occurring on the solar rotational time scale (~27 days). All MJO phases and four solar maximum periods are considered (1979–83, 1989–93, 1999–2003, and 2011–15). Corresponding daily static stabilities in the tropical lower stratosphere (70–100 hPa) are calculated from ERA-Interim data and are averaged over the warm pool region. The statistical significance of occurrence-rate changes following UV peaks and minima is assessed using a Monte Carlo method. When MJO events with amplitudes greater than about 2 are considered during the December–May period (about 15% of those days), significant reductions of MJO occurrence rates and associated increases in static stability in the tropical lower stratosphere are obtained 1–7 days following solar UV peaks. Consistently, cross-correlation analyses of high-pass-filtered daily MJO amplitudes and solar UV flux during the same seasonal period produce significant negative correlations near and following solar UV peaks. Conversely, mean occurrence rates are increased and lower-stratospheric static stabilities are decreased following solar UV minima. The reductions (increases) in occurrence rate following solar UV peaks (minima) are largest when the stratospheric quasi-biennial oscillation is in its easterly phase. Little or no dependence of the solar modulation on the phase of El Niño–Southern Oscillation is obtained.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-17-0265.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lon L. Hood, lon@lpl.arizona.edu

Supplementary Materials

    • Supplemental Materials (PDF 2.18 MB)
Save