Synoptic–Dynamic Climatology of the Aleutian High

Stephen J. Colucci Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York

Search for other papers by Stephen J. Colucci in
Current site
Google Scholar
PubMed
Close
and
Thomas S. Ehrmann Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York

Search for other papers by Thomas S. Ehrmann in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A climatology of the anticyclone that commonly appears over the Aleutian Islands in the wintertime Northern Hemisphere stratosphere is presented. Applying a geometric moments technique to a reanalysis dataset and updating a previously published definition, 68 Aleutian high (AH) events have been identified during 35 winter (October–March) seasons (1979/80–2013/14), or about 2 events per season. The events lasted an average of approximately 33 days. Thirteen of the 68 AH events each temporally and spatially coincided with tropospheric blocking identified with a wave-breaking definition, while 41 of the AH onsets each coincided with a persistently positive geopotential height anomaly in the troposphere. Also, 41 of the 68 AH events each coincided with or were followed by an objectively defined disturbance (split or displacement) to the stratospheric polar vortex. Finally, 47 of these disturbance events were each preceded by an AH onset, such that in almost all winters (33 out of 35), an early season AH was followed by a later-season polar vortex disturbance (PVD).

Potential vorticity (PV) inversion revealed that the geopotential height rises associated with composite AH onset were forced primarily by anticyclonic PV increases in the stratosphere, with the troposphere providing a lesser contribution. Poleward eddy heat fluxes in the stratosphere preceded and especially followed composite AH onset, consistent with the findings that composite AH onset was forced primarily by anticyclonic PV increases in the stratosphere and that many AH onsets were each followed by a PVD onset.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Stephen J. Colucci, sjc25@cornell.edu

Abstract

A climatology of the anticyclone that commonly appears over the Aleutian Islands in the wintertime Northern Hemisphere stratosphere is presented. Applying a geometric moments technique to a reanalysis dataset and updating a previously published definition, 68 Aleutian high (AH) events have been identified during 35 winter (October–March) seasons (1979/80–2013/14), or about 2 events per season. The events lasted an average of approximately 33 days. Thirteen of the 68 AH events each temporally and spatially coincided with tropospheric blocking identified with a wave-breaking definition, while 41 of the AH onsets each coincided with a persistently positive geopotential height anomaly in the troposphere. Also, 41 of the 68 AH events each coincided with or were followed by an objectively defined disturbance (split or displacement) to the stratospheric polar vortex. Finally, 47 of these disturbance events were each preceded by an AH onset, such that in almost all winters (33 out of 35), an early season AH was followed by a later-season polar vortex disturbance (PVD).

Potential vorticity (PV) inversion revealed that the geopotential height rises associated with composite AH onset were forced primarily by anticyclonic PV increases in the stratosphere, with the troposphere providing a lesser contribution. Poleward eddy heat fluxes in the stratosphere preceded and especially followed composite AH onset, consistent with the findings that composite AH onset was forced primarily by anticyclonic PV increases in the stratosphere and that many AH onsets were each followed by a PVD onset.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Stephen J. Colucci, sjc25@cornell.edu
Save
  • Bacmeister, J. T., 1993: Mountain-wave drag in the stratosphere and mesosphere inferred from observed winds and a simple mountain-wave parameterization scheme. J. Atmos. Sci., 50, 377399, https://doi.org/10.1175/1520-0469(1993)050<0377:MWDITS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bhattacharya, Y., and A. J. Gerrard, 2010: Correlations of mesospheric winds with subtle motion of the Arctic polar vortex. Atmos. Chem. Phys., 10, 431436, https://doi.org/10.5194/acp-10-431-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bresky, W. C., and S. J. Colucci, 1996: A forecast and analyzed cyclogenesis event diagnosed with potential vorticity. Mon. Wea. Rev., 124, 22272244, https://doi.org/10.1175/1520-0493(1996)124<2227:AFAACE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charlton, A. J., and L. M. Polvani, 2007: A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate, 20, 449469, https://doi.org/10.1175/JCLI3996.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colucci, S. J., 1985: Explosive cyclogenesis and large-scale circulation changes: Implications for atmospheric blocking. J. Atmos. Sci., 42, 27012717, https://doi.org/10.1175/1520-0469(1985)042<2701:ECALSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colucci, S. J., and M. E. Kelleher, 2015: Diagnostic comparison of tropospheric blocking with and without stratospheric warming. J. Atmos. Sci., 72, 22272240, https://doi.org/10.1175/JAS-D-14-0160.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colucci, S. J., D. P. Baumhefner, and C. E. Konrad, 1999: Numerical prediction of a cold-air outbreak: A case study with forecast ensembles. Mon. Wea. Rev., 127, 15381550, https://doi.org/10.1175/1520-0493(1999)127<1538:NPOACA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and K. A. Emanuel, 1991: Potential vorticity diagnostics of cyclogenesis. Mon. Wea. Rev., 119, 19291953, https://doi.org/10.1175/1520-0493(1991)119<1929:PVDOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dole, R. M., and N. D. Gordon, 1983: Persistent anomalies of the extratropical Northern Hemisphere wintertime circulation: Geographical distribution and regional persistence characteristics. Mon. Wea. Rev., 111, 15671586, https://doi.org/10.1175/1520-0493(1983)111<1567:PAOTEN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douglass, A. R., R. B. Rood, C. J. Weaver, and M. C. Cerniglia, 1993: Implications of three-dimensional tracer studies for two-dimensional assessments of the impact of supersonic aircraft on stratospheric ozone. J. Geophys. Res., 98, 89498963, https://doi.org/10.1029/93JD00250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • France, J. A., V. L. Harvey, C. E. Randall, M. H. Hitchman, and M. J. Schwartz, 2012: A climatology of stratopause temperature and height in the polar vortex and anticyclones. J. Geophys. Res., 117, D06116, https://doi.org/10.1029/2012JD017958.

    • Search Google Scholar
    • Export Citation
  • France, J. A., V. L. Harvey, C. E. Randall, R. L. Collins, A. K. Smith, E. D. Peck, and X. Fang, 2015: A climatology of planetary wave-driven mesospheric inversion layers in the extratropical winter. J. Geophys. Res. Atmos., 120, 399413, https://doi.org/10.1002/2014JD022244..

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hannachi, A., D. Mitchell, L. Gray, and A. Charlton-Perez, 2011: On the use of geometric moments to examine the continuum of sudden stratospheric warmings. J. Atmos. Sci., 68, 657674, https://doi.org/10.1175/2010JAS3585.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hare, F. K., 1960: The disturbed circulation of the arctic stratosphere. J. Meteor., 17, 3651, https://doi.org/10.1175/1520-0469(1960)017<0036:TDCOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harvey, V. L., 2001: An object oriented climatology of stratospheric anticyclones and polar vortices. Ph.D. dissertation, University of Wisconsin–Madison, 157 pp.

    • Crossref
    • Export Citation
  • Harvey, V. L., and M. H. Hitchman, 1996: A climatology of the Aleutian high. J. Atmos. Sci., 53, 20882101, https://doi.org/10.1175/1520-0469(1996)053<2088:ACOTAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harvey, V. L., M. H. Hitchman, R. B. Pierce, and T. D. Fairlie, 1999: Tropospheric aerosol in the Aleutian High. J. Geophys. Res., 104, 62816290, https://doi.org/10.1029/1998JD200094.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harvey, V. L., R. B. Pierce, T. D. Fairlie, and M. H. Hitchman, 2002: A climatology of stratospheric polar vortices and anticyclones. J. Geophys. Res., 107, 4442, https://doi.org/10.1029/2001JD001471.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harvey, V. L., R. B. Pierce, M. H. Hitchman, C. E. Randall, and T. D. Fairlie, 2004: On the distribution of ozone in stratospheric anticyclones. J. Geophys. Res., 109, D24308, https://doi.org/10.1029/2004JD004992.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidston, J., A. A. Scaife, S. C. Hardiman, D. M. Mitchell, N. Butchart, M. P. Baldwin, and L. G. Gray, 2015: Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nat. Geosci., 8, 433440, https://doi.org/10.1038/ngeo2424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Konrad, C. E., and S. J. Colucci, 1989: An examination of extreme cold air outbreaks over eastern North America. Mon. Wea. Rev., 117, 26872700, https://doi.org/10.1175/1520-0493(1989)117<2687:AEOECA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kozubek, M., P. Krizan, and J. Lastovicka, 2015: Northern Hemispheric stratospheric winds in higher midlatitudes: Longitudinal distribution and long-term trends. Atmos. Chem. Phys., 15, 22032213, https://doi.org/10.5194/acp-15-2203-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., Y. Liu, Z. Cai, S. Gao, J. Bian, X. Liu, and K. Chance, 2010: Dynamic formation of extreme ozone minimum events over the Tibetan Plateau during the northern winters 1987–2001. J. Geophys. Res., 115, D18311, https://doi.org/10.1029/2009JD013130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manney, G. L., and Coauthors, 1995: Formation of low-ozone pockets in the middle stratospheric anticyclone during winter. J. Geophys. Res., 100, 13 93913 950, https://doi.org/10.1029/95JD00372.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meriwether, J. W., and A. J. Gerrard, 2004: Mesosphere inversion layers and stratosphere temperature enhancements. Rev. Geophys., 42, RG3003, https://doi.org/10.1029/2003RG000133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mudryk, L. R., and P. J. Kushner, 2011: A method to diagnose sources of annular mode time scales. J. Geophys. Res., 116, D14114, https://doi.org/10.1029/2010JD015291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muscari, G., A. G. di Sarra, R. L. de Zafra, F. Lucci, F. Baordo, F. Angelini, and G. Fiocco, 2007: Middle atmosphere O3, CO, N2O, HNO3, and temperature profiles during the warm Arctic winter 2001–2002. J. Geophys. Res., 112, D14304, https://doi.org/10.1029/2006JD007849.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Neill, A., and V. D. Pope, 1988: Simulations of linear and nonlinear disturbances in the stratosphere. Quart. J. Roy. Meteor. Soc., 114, 10631110, https://doi.org/10.1002/qj.49711448210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pawson, S., and Coauthors, 2000: The GCM-Reality Intercomparison Project for SPARC (GRIPS): Scientific issues and initial results. Bull. Amer. Meteor. Soc., 81, 781796, https://doi.org/10.1175/1520-0477(2000)081<0781:TGIPFS>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pelly, J. L., and B. J. Hoskins, 2003: A new perspective on blocking. J. Atmos. Sci., 60, 743755, https://doi.org/10.1175/1520-0469(2003)060<0743:ANPOB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, R.-C., M. Cai, C. Xiang, and G. Wu, 2012: Observational evidence of the delayed response of stratospheric polar vortex variability to ENSO SST anomalies. Climate Dyn., 38, 13451358, https://doi.org/10.1007/s00382-011-1137-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, https://doi.org/10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rood, R. B., A. R. Douglass, J. A. Kaye, and D. B. Considine, 1993: Characteristics of wintertime and autumn nitric acid chemistry as defined by Limb Infrared Monitor of the Stratosphere (LIMBS) data. J. Geophys. Res., 98, 18 53318 545, https://doi.org/10.1029/93JD01419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosier, S. L., and B. L. Lawrence, 1999: The January 1992 stratospheric sudden warming: A role for tropical inertial instability? Quart. J. Roy. Meteor. Soc., 125, 25752596, https://doi.org/10.1002/qj.49712555912.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soukharev, B., and K. Labitzke, 2001: The 11-year solar cycle, the 27-day sun’s rotation and the area of the stratospheric Aleutian High. Meteor. Z., 10, 2936, https://doi.org/10.1127/0941-2948/2001/0010-0029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sparrow, S. N., L. J. Gray, M. Juckes, A. O’Neill, and D. G. Andrews, 2004: Simulations of stratospheric flow regimes during Northern Hemisphere winter. Adv. Space Res., 34, 337342, https://doi.org/10.1016/j.asr.2003.03.042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steinbrecht, W., and Coauthors, 2006: Interannual variation patterns of total ozone and lower stratospheric temperature in observations and model simulations. Atmos. Chem. Phys., 6, 349374, https://doi.org/10.5194/acp-6-349-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steinbrecht, W., B. Hassler, H. Claude, P. Winkler, and R. S. Stolarski, 2003: Global distribution of total ozone and lower stratospheric temperature variations. Atmos. Chem. Phys., 3, 14211438, https://doi.org/10.5194/acp-3-1421-2003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurairajah, B., R. L. Collins, V. L. Harvey, R. S. Lieberman, and K. Mizutani, 2010a: Rayleigh lidar observations of reduced gravity wave activity during the formation of an elevated stratopause in 2004 at Chatanika, Alaska (65°N, 147°W). J. Geophys. Res., 115, D13109, https://doi.org/10.1029/2009JD013036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurairajah, B., R. L. Collins, V. L. Harvey, R. S. Lieberman, M. Gerding, K. Mizutani, and J. M. Livingston, 2010b: Gravity wave activity in the Arctic stratosphere and mesosphere during the 2007–2008 and 2008–2009 stratospheric sudden warming events. J. Geophys. Res., 115, D00N06, https://doi.org/10.1029/2010JD014125.

    • Search Google Scholar
    • Export Citation
  • Waugh, D. N. W., 1997: Elliptical diagnostics of stratospheric polar vortices. Quart. J. Roy. Meteor. Soc., 123, 17251748, https://doi.org/10.1002/qj.49712354213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weaver, C. J., A. R. Douglass, and R. B. Rood, 1995: Tracer transport for realistic aircraft emission scenarios calculated using a three-dimensional model. J. Geophys. Res., 100, 52035214, https://doi.org/10.1029/94JD03320.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 375 79 4
PDF Downloads 290 59 3