Direct Numerical Simulations to Investigate Energy Transfer between Meso- and Synoptic Scales

Masih Eghdami Pratt School of Engineering, Duke University, Durham, North Carolina

Search for other papers by Masih Eghdami in
Current site
Google Scholar
PubMed
Close
,
Shanti Bhushan Department of Mechanical Engineering, Mississippi State University, Mississippi State, Mississippi

Search for other papers by Shanti Bhushan in
Current site
Google Scholar
PubMed
Close
, and
Ana P. Barros Pratt School of Engineering, Duke University, Durham, North Carolina

Search for other papers by Ana P. Barros in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Understanding the development of the atmospheric energy spectrum across scales is necessary to elucidate atmospheric predictability. In this manuscript, the authors investigate energy transfer between the synoptic scale and the mesoscale using direct numerical simulations (DNSs) of two-dimensional (2D) turbulence transfer under forcing applied at different scales. First, DNS results forced by a single kinetic energy source at large scales show that the energy spectra slopes of the direct enstrophy cascade are steeper than the theoretically predicted −3 slope. Second, the presence of two inertial ranges in 2D turbulence at intermediate scales is investigated by introducing a second energy source in the meso-α-scale range. The energy spectra for the DNS with two kinetic energy sources exhibit flatter slopes that are closer to −3, consistent with the observed kinetic energy spectra of horizontal winds in the atmosphere at synoptic scales. Further, the results are independent of model resolution and scale separation between the two energy sources, with a robust transition region between the lower synoptic and the upper meso-α scales in agreement with classical observations in the upper troposphere. These results suggest the existence of a mesoscale feedback on synoptic-scale predictability that emerges from the concurrence of the direct (downscale) enstrophy transfer in the synoptic scales and the inverse (upscale) kinetic energy transfer from the mesoscale to the synoptic scale in the troposphere.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ana P. Barros, barros@duke.edu

Abstract

Understanding the development of the atmospheric energy spectrum across scales is necessary to elucidate atmospheric predictability. In this manuscript, the authors investigate energy transfer between the synoptic scale and the mesoscale using direct numerical simulations (DNSs) of two-dimensional (2D) turbulence transfer under forcing applied at different scales. First, DNS results forced by a single kinetic energy source at large scales show that the energy spectra slopes of the direct enstrophy cascade are steeper than the theoretically predicted −3 slope. Second, the presence of two inertial ranges in 2D turbulence at intermediate scales is investigated by introducing a second energy source in the meso-α-scale range. The energy spectra for the DNS with two kinetic energy sources exhibit flatter slopes that are closer to −3, consistent with the observed kinetic energy spectra of horizontal winds in the atmosphere at synoptic scales. Further, the results are independent of model resolution and scale separation between the two energy sources, with a robust transition region between the lower synoptic and the upper meso-α scales in agreement with classical observations in the upper troposphere. These results suggest the existence of a mesoscale feedback on synoptic-scale predictability that emerges from the concurrence of the direct (downscale) enstrophy transfer in the synoptic scales and the inverse (upscale) kinetic energy transfer from the mesoscale to the synoptic scale in the troposphere.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ana P. Barros, barros@duke.edu
Save
  • Berner, J., and Coauthors, 2017: Stochastic parameterization: Toward a new view of weather and climate models. Bull. Amer. Meteor. Soc., 98, 565588, https://doi.org/10.1175/BAMS-D-15-00268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bhushan, S., and Z. Warsi, 2007: Large eddy simulation of free-shear flows using an algebraic model. Comput. Fluids, 36, 13841397, https://doi.org/10.1016/j.compfluid.2006.12.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biferale, L., S. Musacchio, and F. Toschi, 2012: Inverse energy cascade in three-dimensional isotropic turbulence. Phys. Rev. Lett., 108, 164501, https://doi.org/10.1103/PhysRevLett.108.164501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boffetta, G., 2007: Energy and enstrophy fluxes in the double cascade of two-dimensional turbulence. J. Fluid Mech., 589, 253260, https://doi.org/10.1017/S0022112007008014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boffetta, G., and S. Musacchio, 2010: Evidence for the double cascade scenario in two-dimensional turbulence. Phys. Rev., 82E, 016307, https://doi.org/10.1103/PhysRevE.82.016307.

    • Search Google Scholar
    • Export Citation
  • Boffetta, G., and R. E. Ecke, 2012: Two-dimensional turbulence. Annu. Rev. Fluid Mech., 44, 427451, https://doi.org/10.1146/annurev-fluid-120710-101240.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borue, V., 1993: Spectral exponents of enstrophy cascade in stationary two-dimensional homogeneous turbulence. Phys. Rev. Lett., 71, 3967, https://doi.org/10.1103/PhysRevLett.71.3967.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cencini, M., P. Muratore-Ginanneschi, and A. Vulpiani, 2011: Nonlinear superposition of direct and inverse cascades in two-dimensional turbulence forced at large and small scales. Phys. Rev. Lett., 107, 174502, https://doi.org/10.1103/PhysRevLett.107.174502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1971: Geostrophic turbulence. J. Atmos. Sci., 28, 10871095, https://doi.org/10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cho, J. Y. N., and E. Lindborg, 2001: Horizontal velocity structure functions in the upper troposphere and lower stratosphere: 1. Observations. J. Geophys. Res., 106, 10 22310 232, https://doi.org/10.1029/2000JD900814.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cho, J. Y. N., R. E. Newell, and J. D. Barrick, 1999: Horizontal wavenumber spectra of winds, temperature, and trace gases during the Pacific exploratory missions: 2. Gravity waves, quasi-two-dimensional turbulence, and vortical modes. J. Geophys. Res., 104, 16 29716 308, https://doi.org/10.1029/1999JD900068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, K. J., P. H. Lauritzen, S. K. Mishra, R. B. Neale, M. A. Taylor, and J. J. Tribbia, 2013: AMIP simulation with the CAM4 spectral element dynamical core. J. Climate, 26, 689709, https://doi.org/10.1175/JCLI-D-11-00448.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyink, G. L., 1996: Exact results on stationary turbulence in 2D: Consequences of vorticity conservation. Physica D, 91, 97142, https://doi.org/10.1016/0167-2789(95)00250-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frehlich, R., and R. Sharman, 2010: Climatology of velocity and temperature turbulence statistics determined from rawinsonde and ACARS/AMDAR data. J. Appl. Meteor. Climatol., 49, 11491169, https://doi.org/10.1175/2010JAMC2196.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamilton, K., Y. O. Takahashi, and W. Ohfuchi, 2008: Mesoscale spectrum of atmospheric motions investigated in a very fine resolution global general circulation model. J. Geophys. Res., 113, D18110, https://doi.org/10.1029/2008JD009785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kraichnan, R. H., 1967: Inertial ranges in two-dimensional turbulence. Phys. Fluids, 10, 14171423, https://doi.org/10.1063/1.1762301.

  • Kraichnan, R. H., 1971: Inertial-range transfer in two- and three-dimensional turbulence. J. Fluid Mech., 47, 525535, https://doi.org/10.1017/S0022112071001216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1989: Two-dimensional turbulence generated by energy sources at two scales. J. Atmos. Sci., 46, 20262030, https://doi.org/10.1175/1520-0469(1989)046<2026:TDTGBE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindborg, E., 2005: The effect of rotation on the mesoscale energy cascade in the free atmosphere. Geophys. Res. Lett., 32, L01809, https://doi.org/10.1029/2004GL021319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindborg, E., 2006: The energy cascade in a strongly stratified fluid. J. Fluid Mech., 550, 207242, https://doi.org/10.1017/S0022112005008128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindborg, E., and K. Alvelius, 2000: The kinetic energy spectrum of the two-dimensional enstrophy turbulence cascade. Phys. Fluids, 12, 945, https://doi.org/10.1063/1.870379.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1969: Atmospheric predictability as revealed by naturally occurring analogues. J. Atmos. Sci., 26, 636646, https://doi.org/10.1175/1520-0469(1969)26<636:APARBN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marino, R., P. D. Mininni, D. Rosenberg, and A. Pouquet, 2013: Inverse cascades in rotating stratified turbulence: Fast growth of large scales. Europhys. Lett., 102, 44006, https://doi.org/10.1209/0295-5075/102/44006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marino, R., A. Pouquet, and D. Rosenberg, 2015: Resolving the paradox of oceanic large-scale balance and small-scale mixing. Phys. Rev. Lett., 114, 114504, https://doi.org/10.1103/PhysRevLett.114.114504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams J. C., 2017: Submesoscale currents in the ocean. Proc. Roy. Soc. London, 472A, 20160117, https://doi.org/10.1098/rspa.2016.0117.

    • Search Google Scholar
    • Export Citation
  • Nastrom, G. D., and K. S. Gage, 1985: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci., 42, 950960, https://doi.org/10.1175/1520-0469(1985)042<0950:ACOAWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nogueira, M., and A. P. Barros, 2014: The nonconvective/convective structural transition in stochastic scaling of atmospheric fields. J. Geophys. Res. Atmos., 119, 13 77113 794, https://doi.org/10.1002/2014JD022548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pope, S. B., 2000: Turbulent Flows. Cambridge University Press, 771 pp.

    • Crossref
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032, https://doi.org/10.1175/MWR2830.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., S. H. Park, J. B. Klemp, and C. Snyder, 2014: Atmospheric kinetic energy spectra from global high-resolution nonhydrostatic simulations. J. Atmos. Sci., 71, 43694381, https://doi.org/10.1175/JAS-D-14-0114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y. Q., R. Rottuno, and F. Zhang, 2017: Contributions of moist convection and internal gravity waves to building the atmospheric −5/3 kinetic energy spectra. J. Atmos. Sci., 74, 185201, https://doi.org/10.1175/JAS-D-16-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thuburn, J., 2008: Some conservation issues for the dynamical cores of NWP and climate models. J. Comput. Phys., 227, 37153730, https://doi.org/10.1016/j.jcp.2006.08.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tung, K. K., and W. W. Orlando, 2003a: The k−3 and k−5/3 energy spectrum of atmospheric turbulence: Quasigeostrophic two-level model simulation. J. Atmos. Sci., 60, 824835, https://doi.org/10.1175/1520-0469(2003)060<0824:TKAKES>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tung, K. K., and W. W. Orlando, 2003b: On the differences between 2D and QG turbulence. Discrete Contin. Dyn. Syst., 3B, 145162, https://doi.org/10.3934/dcdsb.2003.3.145.

    • Search Google Scholar
    • Export Citation
  • Vallgren, A., and E. Lindborg, 2011: The enstrophy cascade in forced two-dimensional turbulence. J. Fluid Mech., 671, 168183, https://doi.org/10.1017/S0022112010005562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallgren, A., E. Deusebio, and E. Lindborg, 2011: Possible explanation of the atmospheric kinetic and potential energy spectra. Phys. Rev. Lett., 107, 268501, https://doi.org/10.1103/PhysRevLett.107.268501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waite, M. L., and C. Snyder, 2009: The mesoscale kinetic energy spectrum of a baroclinic life cycle. J. Atmos. Sci., 66, 883901, https://doi.org/10.1175/2008JAS2829.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, H., D. Byrne, G. Falkovich, and M. Shats, 2011: Upscale energy transfer in thick turbulent fluid layers. Nat. Phys., 7, 321324, https://doi.org/10.1038/nphys1910.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 305 74 5
PDF Downloads 234 35 2