Erroneous Attribution of Deep Convective Invigoration to Aerosol Concentration

Adam Varble Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

Search for other papers by Adam Varble in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Contiguous time–height cloud objects at the Department of Energy Atmospheric Radiation Measurement Southern Great Plains (SGP) site are matched with surface condensation nuclei (CN) concentrations and retrieved thermodynamic and kinematic vertical profiles for warm-cloud-base, cold-cloud-top systems in convectively unstable environments. Statistical analyses show that previously published conclusions that increasing CN concentrations cause a decrease in minimum cloud-top temperature (CTT) at the SGP site through the aerosol convective invigoration effect are unfounded. The CN–CTT relationship is statistically insignificant, while correlations between convective available potential energy (CAPE), level of neutral buoyancy (LNB), and CN concentration account for most of the change in the CN–CTT positive correlation. Removal of clouds with minimum CTTs > −36°C from the analysis eliminates the CN–CTT correlation. Composited dirty conditions at the SGP have ~1°C-warmer low levels and ~1°C-cooler upper levels than clean conditions. This correlation between aerosol concentrations and thermodynamic profiles may be caused by an increase in regional rainfall preceding deep convective conditions as CN concentration decreases. Increased rainfall can be expected to increase wet deposition of aerosols, cool low-level temperatures, and warm upper-level temperatures. The masking of a potential aerosol effect by such small thermodynamic changes implies that the strategy of analyzing subsets of aerosol data by binned meteorological factor values is not a valid method for discerning an aerosol effect in some situations. These findings highlight the need for more careful, detailed, and strategic observations to confidently isolate and quantify an aerosol deep convective invigoration effect.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: a.varble@utah.edu

Abstract

Contiguous time–height cloud objects at the Department of Energy Atmospheric Radiation Measurement Southern Great Plains (SGP) site are matched with surface condensation nuclei (CN) concentrations and retrieved thermodynamic and kinematic vertical profiles for warm-cloud-base, cold-cloud-top systems in convectively unstable environments. Statistical analyses show that previously published conclusions that increasing CN concentrations cause a decrease in minimum cloud-top temperature (CTT) at the SGP site through the aerosol convective invigoration effect are unfounded. The CN–CTT relationship is statistically insignificant, while correlations between convective available potential energy (CAPE), level of neutral buoyancy (LNB), and CN concentration account for most of the change in the CN–CTT positive correlation. Removal of clouds with minimum CTTs > −36°C from the analysis eliminates the CN–CTT correlation. Composited dirty conditions at the SGP have ~1°C-warmer low levels and ~1°C-cooler upper levels than clean conditions. This correlation between aerosol concentrations and thermodynamic profiles may be caused by an increase in regional rainfall preceding deep convective conditions as CN concentration decreases. Increased rainfall can be expected to increase wet deposition of aerosols, cool low-level temperatures, and warm upper-level temperatures. The masking of a potential aerosol effect by such small thermodynamic changes implies that the strategy of analyzing subsets of aerosol data by binned meteorological factor values is not a valid method for discerning an aerosol effect in some situations. These findings highlight the need for more careful, detailed, and strategic observations to confidently isolate and quantify an aerosol deep convective invigoration effect.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: a.varble@utah.edu
Save
  • Ackerman, T. P., K. Liou, F. P. Valero, and L. Pfister, 1988: Heating rates in tropical anvils. J. Atmos. Sci., 45, 16061623, https://doi.org/10.1175/1520-0469(1988)045<1606:HRITA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Altaratz, O., R. Z. Bar-Or, U. Wollner, and I. Koren, 2013: Relative humidity and its effect on aerosol optical depth in the vicinity of convective clouds. Environ. Res. Lett., 8, 034025, https://doi.org/10.1088/1748-9326/8/3/034025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Altaratz, O., I. Koren, L. A. Remer, and E. Hirsch, 2014: Cloud invigoration by aerosols— Coupling between microphysics and dynamics. Atmos. Res., 140–141, 3860, https://doi.org/10.1016/j.atmosres.2014.01.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreae, M. O., D. Rosenfeld, P. Artaxo, A. A. Costa, G. P. Frank, K. M. Longo, and M. A. F. Silva-Dias, 2004: Smoking rain clouds over the Amazon. Science, 303, 13371342, https://doi.org/10.1126/science.1092779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ARM CRF, 1994: Arkansas-Red Basin River Forecast Center (ABRFCPRECIP): April 1997 to October 2010. Southern Great Plains (SGP) External Data (satellites and others) (×1), compiled by R. Wagener and S. Xie, ARM CRF Data Archive, Oak Ridge, TN, accessed 15 January 2015.

  • ARM CRF, 1995: Aerosol Observing System (AOS): April 1997 to October 2010. Southern Great Plains (SGP) Central Facility, Lamont, OK (C1), particle number concentration, compiled by A. Jefferson et al., ARM CRF Data Archive, Oak Ridge, TN, accessed 16 January 2015, https://doi.org/10.5439/1025147.

    • Crossref
    • Export Citation
  • ARM CRF, 1996a: Active Remotely-Sensed Cloud Locations (ARSCLBND1CLOTH): April 1997 to October 2010. Southern Great Plains (SGP) Central Facility, Lamont, OK (C1), compiled by K. Johnson and S. Giangrande, ARM CRF Data Archive, Oak Ridge, TN, accessed 14 January 2015, https://doi.org/10.5439/1027283.

    • Crossref
    • Export Citation
  • ARM CRF, 1996b: Merged Sounding (MERGESONDE1MACE): April 1997 to October 2010. Southern Great Plains (SGP) Central Facility, Lamont, OK (C1), compiled by D. Troyan, S. Giangrande, and T. Toto, ARM CRF Data Archive, Oak Ridge, TN, accessed 4 February 2015, https://doi.org/10.5439/1034922.

    • Crossref
    • Export Citation
  • ARM CRF, 2013: ARM convective available potential energy (CAPE), convective inhibition (CIN) product: April 1997 to October 2010. Southern Great Plains (SGP) Central Facility, Lamont, OK (C1), compiled by Michael Jensen, ARM CRF Data Archive, Oak Ridge, TN, accessed 14 January 2015.

  • Bell, T. L., D. Rosenfeld, K.-M. Kim, J.-M. Yoo, M.-I. Lee, and M. Hahnenberger, 2008: Midweek increase in U.S. summer rain and storm heights suggests air pollution invigorates rainstorms. J. Geophys. Res., 113, D02209, https://doi.org/10.1029/2007JE002976.

    • Search Google Scholar
    • Export Citation
  • Borys, R. D., D. H. Lowenthal, M. A. Wetzel, F. Herrera, A. Gonzalez, and J. Harris, 1998: Chemical and microphysical properties of marine stratiform cloud in the North Atlantic. J. Geophys. Res., 103, 22 07322 085, https://doi.org/10.1029/98JD02087.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boucher, O., and J. Quaas, 2013: Water vapour affects both rain and aerosol optical depth. Nat. Geosci., 6, 45, https://doi.org/10.1038/ngeo1692.

  • Burkart, J., G. Steiner, G. Reischl, and R. Hitzenberger, 2011: Long-term study of cloud condensation nuclei (CCN) activation of the atmospheric aerosol in Vienna. Atmos. Environ., 45, 57515759, https://doi.org/10.1016/j.atmosenv.2011.07.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chand, D., and Coauthors, 2012: Aerosol optical depth increase in partly cloudy conditions. J. Geophys. Res., 117, D17207, https://doi.org/10.1029/2012JD017894.

    • Search Google Scholar
    • Export Citation
  • Chen, T., J. Guo, Z. Li, C. Zhao, H. Liu, M. Cribb, F. Wang, and J. He, 2016: A CloudSat perspective on the cloud climatology and its association with aerosol perturbations in the vertical over eastern China. J. Atmos. Sci., 73, 35993616, https://doi.org/10.1175/JAS-D-15-0309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chew, B. N., J. R. Campbell, J. S. Reid, D. M. Giles, E. J. Welton, S. V. Salinas, and S. C. Liew, 2011: Tropical cirrus cloud contamination in sun photometer data. Atmos. Environ., 45, 67246731, https://doi.org/10.1016/j.atmosenv.2011.08.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clothiaux, E. E., T. P. Ackerman, G. G. Mace, K. P. Moran, R. T. Marchand, M. A. Miller, and B. E. Martner, 2000: Objective determination of cloud heights and radar reflectivities using a combination of active remote sensors at the ARM CART sites. J. Appl. Meteor., 39, 645665, https://doi.org/10.1175/1520-0450(2000)039<0645:ODOCHA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clothiaux, E. E., and Coauthors, 2001: The ARM Millimeter Wave Cloud Radars (MMCRs) and the Active Remote Sensing of Clouds (ARSCL) Value Added Product (VAP). DOE Tech. Memo. ARM VAP-002.1, 56 pp., https://www.arm.gov/publications/tech_reports/arm-vap-002-1.pdf.

  • Corti, T., and Coauthors, 2008: Unprecedented evidence for deep convection hydrating the tropical stratosphere. Geophys. Res. Lett., 35, L10810, https://doi.org/10.1029/2008GL033641.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., R. Zhang, G. Li, and W.-K. Tao, 2007: Effects of aerosols and relative humidity on cumulus clouds. J. Geophys. Res., 112, D14204, https://doi.org/10.1029/2006JD008136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., and Coauthors, 2009: Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds. J. Geophys. Res., 114, D22206, https://doi.org/10.1029/2009JD012352.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, H., and Coauthors, 2003: Deep convective injection of boundary layer air into the lowermost stratosphere at midlatitudes. Atmos. Chem. Phys., 3, 739745, https://doi.org/10.5194/acp-3-739-2003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2015: Untangling microphysical impacts on deep convection applying a novel modeling methodology. J. Atmos. Sci., 72, 24462464, https://doi.org/10.1175/JAS-D-14-0307.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and H. Morrison, 2016: Untangling microphysical impacts on deep convection applying a novel modeling methodology. Part II: Double-moment microphysics. J. Atmos. Sci., 73, 37493770, https://doi.org/10.1175/JAS-D-15-0367.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gryspeerdt, E., P. Stier, and B. S. Grandey, 2014a: Cloud fraction mediates the aerosol optical depth-cloud top height relationship. Geophys. Res. Lett., 41, 36223627, https://doi.org/10.1002/2014GL059524.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gryspeerdt, E., P. Stier, and D. G. Partridge, 2014b: Links between satellite-retrieved aerosol and precipitation. Atmos. Chem. Phys., 14, 96779694, https://doi.org/10.5194/acp-14-9677-2014 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gunn, R., and B. B. Phillips, 1957: An experimental investigation of the effect of air pollution on the initiation of rain. J. Meteor., 14, 272280, https://doi.org/10.1175/1520-0469(1957)014<0272:AEIOTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1982: Cloud clusters and large-scale vertical motions in the tropics. J. Meteor. Soc. Japan, 60, 396410, https://doi.org/10.2151/jmsj1965.60.1_396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Igel, M. R., and S. C. van den Heever, 2015: The relative influence of environmental characteristics on tropical deep convective morphology as observed by CloudSat. J. Geophys. Res. Atmos., 120, 43044322, https://doi.org/10.1002/2014JD022690.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A. P., 2009: Notes on state-of-art investigations of aerosol effects on precipitation: A critical review. Environ. Res. Lett., 4, 015004, https://doi.org/10.1088/1748-9326/4/1/015004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A. P., D. Rosenfeld, and A. Pokrovsky, 2005: Aerosol impact on the dynamics and microphysics of deep convective clouds. Quart. J. Roy. Meteor. Soc., 131, 26392663, https://doi.org/10.1256/qj.04.62.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A., N. Benmoshe, and A. Pokrovsky, 2008: Factors determining the impact of aerosols on surface precipitation from clouds: An attempt at classification. J. Atmos. Sci., 65, 17211748, https://doi.org/10.1175/2007JAS2515.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koren, I., Y. J. Kaufman, D. Rosenfeld, L. A. Remer, and Y. Rudich, 2005: Aerosol invigoration and restructuring of Atlantic convective clouds. Geophys. Res. Lett., 32, L14828, https://doi.org/10.1029/2005GL023187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koren, I., G. Feingold, and L. A. Remer, 2010: The invigoration of deep convective clouds over the Atlantic: Aerosol effect, meteorology or retrieval artifact? Atmos. Chem. Phys., 10, 88558872, https://doi.org/10.5194/acp-10-8855-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koren, I., O. Altaratz, L. A. Remer, G. Feingold, J. V. Martins, and R. H. Heiblum, 2012: Aerosol-induced intensification of rain from the tropics to the mid-latitudes. Nat. Geosci., 5, 118122, https://doi.org/10.1038/ngeo1364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuang, C., 2016: Condensation Particle Counter Instrument handbook. Tech. Rep. DOE/SC-ARM-TR-145, U.S. Department of Energy, Washington, DC, 22 pp., https://www.arm.gov/publications/tech_reports/doe-sc-arm-tr-145.pdf.

    • Crossref
    • Export Citation
  • Lebo, Z. J., 2014: The sensitivity of a numerically simulated idealized squall line to the vertical distribution of aerosols. J. Atmos. Sci., 71, 45814596, https://doi.org/10.1175/JAS-D-14-0068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebo, Z. J., and J. H. Seinfeld, 2011: Theoretical basis for convective invigoration due to increased aerosol concentration. Atmos. Chem. Phys., 11, 54075429, https://doi.org/10.5194/acp-11-5407-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebo, Z. J., and H. Morrison, 2014: Dynamical effects of aerosol perturbations on simulated idealized squall lines. Mon. Wea. Rev., 142, 9911009, https://doi.org/10.1175/MWR-D-13-00156.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., F. Niu, J. Fan, Y. Liu, D. Rosenfeld, and Y. Ding, 2011: Long-term impacts of aerosols on the vertical development of clouds and precipitation. Nat. Geosci., 4, 888894, https://doi.org/10.1038/ngeo1313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, J. C., T. Matsui, R. A. Pielke Sr., and C. Kummerow, 2006: Effects of biomass-burning-derived aerosols on precipitation and clouds in the Amazon Basin: A satellite-based empirical study. J. Geophys. Res., 111, D19204, https://doi.org/10.1029/2005JD006884.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mauger, G. S., and J. R. Norris, 2007: Meteorological bias in satellite estimates of aerosol-cloud relationships. Geophys. Res. Lett., 34, L16824, https://doi.org/10.1029/2007GL029952.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., 2012: On the robustness of aerosol effects on an idealized supercell storm simulated with a cloud system-resolving model. Atmos. Chem. Phys., 12, 76897705, https://doi.org/10.5194/acp-12-7689-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and W. W. Grabowski, 2011: Cloud-system resolving model simulations of aerosol indirect effects on tropical deep convection and its thermodynamic environment. Atmos. Chem. Phys., 11, 10 50310 523, https://doi.org/10.5194/acp-11-10503-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nugent, A. D., C. D. Watson, G. Thompson, and R. B. Smith, 2016: Aerosol impacts on thermally driven orographic convection. J. Atmos. Sci., 73, 31153132, https://doi.org/10.1175/JAS-D-15-0320.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Omar, A. H., and Coauthors, 2013: CALIOP and AERONET aerosol optical depth comparisons: One size fits none. J. Geophys. Res. Atmos., 118, 47484766, https://doi.org/10.1002/jgrd.50330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, J., Z. Li, H. Zhang, J. Liu, and M. Cribb, 2016: Systematic changes in cloud radiative forcing with aerosol loading for deep clouds in the tropics. J. Atmos. Sci., 73, 231249, https://doi.org/10.1175/JAS-D-15-0080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randall, D. A., Harshvardhan, D. A. Dazlich, and T. G. Corsetti, 1989: Interactions among radiation, convection, and large-scale dynamics in a general circulation model. J. Atmos. Sci., 46, 19431970, https://doi.org/10.1175/1520-0469(1989)046<1943:IARCAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., 1999: TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys. Res. Lett., 26, 31053108, https://doi.org/10.1029/1999GL006066.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and T. L. Bell, 2011: Why do tornados and hailstorms rest on weekend? J. Geophys. Res., 116, D20211, https://doi.org/10.1029/2011JD016214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., U. Lohmann, G. B. Raga, C. D. O’Dowd, M. Kulmala, S. Fuzzi, A. Reissell, and M. Andreae, 2008: Flood or drought: How do aerosols affect precipitation? Science, 321, 13091313, https://doi.org/10.1126/science.1160606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheridan, P. J., D. J. Delene, and J. A. Ogren, 2001: Four years of continuous surface aerosol measurements from the Department of Energy’s Atmospheric Radiation Measurement Program Southern Great Plains Cloud and Radiation Testbed site. J. Geophys. Res., 106, 20 73520 747, https://doi.org/10.1029/2001JD000785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sihto, S.-L., and Coauthors, 2011: Seasonal variation of CCN concentrations and aerosol activation properties in boreal forest. Atmos. Chem. Phys., 11, 13 26913 285, https://doi.org/10.5194/acp-11-13269-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and G. Feingold, 2009: Untangling aerosol effects on clouds and precipitation in a buffered system. Nature, 461, 607613, https://doi.org/10.1038/nature08281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Storer, R. L., and S. C. van den Heever, 2013: Microphysical processes evident in aerosol forcing of tropical deep convective clouds. J. Atmos. Sci., 70, 430446, https://doi.org/10.1175/JAS-D-12-076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Storer, R. L., S. C. van den Heever, and T. S. L’Ecuyer, 2014: Observations of aerosol-induced convective invigoration in the tropical east Atlantic. J. Geophys. Res. Atmos., 119, 39633975, https://doi.org/10.1002/2013JD020272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., X. Li, A. Khain, T. Matsiu, S. Lang, and J. Simpson, 2007: Role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations. J. Geophys. Res., 112, D24S18, https://doi.org/10.1029/2007JD008728.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., J.-P. Chen, Z. Li, C. Wang, and C. Zhang, 2012: Impact of aerosols on convective clouds and precipitation. Rev. Geophys., 50, RG2001, https://doi.org/10.1029/2011RG000369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troyan, D., 2012: Merged sounding value-added product. Tech. Rep. DOE/SC-ARM/TR-087, U.S. Department of Energy, Washington, DC, 19 pp., http://www.arm.gov/publications/tech_reports/doe-sc-arm-tr-087.pdf.

  • van den Heever, S. C., and W. R. Cotton, 2007: Urban aerosol impacts on downwind convective storms. J. Appl. Meteor. Climatol., 46, 828850, https://doi.org/10.1175/JAM2492.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Heever, S. C., G. G. Carrió, W. R. Cotton, P. J. DeMott, and A. J. Prenni, 2006: Impacts of nucleating aerosol on Florida storms. Part I: Mesoscale simulations. J. Atmos. Sci., 63, 17521775, https://doi.org/10.1175/JAS3713.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Heever, S. C., G. L. Stephens, and N. B. Wood, 2011: Aerosol indirect effects on tropical convection characteristics under conditions of radiative-convective equilibrium. J. Atmos. Sci., 68, 699718, https://doi.org/10.1175/2010JAS3603.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wall, C., E. Zipser, and C. Liu, 2014: An investigation of the aerosol indirect effect on convective intensity using satellite observations. J. Atmos. Sci., 71, 430447, https://doi.org/10.1175/JAS-D-13-0158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, B., E. Gryspeerdt, P. Stier, H. Morrison, and G. Thompson, 2017: Uncertainty from the choice of microphysics scheme in convection-permitting models significantly exceeds aerosol effects. Atmos. Chem. Phys., 17, 12 14512 175, https://doi.org/10.5194/acp-17-12145-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, H., Z. Li, J. Huang, M. Cribb, and J. Liu, 2014: Long-term aerosol-mediated changes in cloud radiative forcing of deep clouds at the top and bottom of the atmosphere over the Southern Great Plains. Atmos. Chem. Phys., 14, 71137124, https://doi.org/10.5194/acp-14-7113-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, T., L. A. Remer, K. E. Pickering, and H. Yu, 2011: Observational evidence of aerosol enhancement of lightning activity and convective invigoration. Geophys. Res. Lett., 38, L04701, https://doi.org/10.1029/2010GL046052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., M. A. Miller, M. D. Parker, P. M. Markowski, Y. Richardson, H. Brooks, and J. M. Straka, 2013: Comment on “Why do tornados and hailstorms rest on weekends?” by D. Rosenfeld and T. Bell. J. Geophys. Res. Atmos., 118, 73327338, https://doi.org/10.1002/jgrd.50526.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., J. S. Reid, and B. N. Holben, 2005: An analysis of potential cloud artifacts in MODIS over ocean aerosol optical thickness products. Geophys. Res. Lett., 32, L15803, https://doi.org/10.1029/2005GL023254.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 2003: Some views on “hot towers” after 50 years of tropical field programs and two years of TRMM data. Cloud Systems, Hurricanes, and the Tropical Rainfall Measuring Mission (TRMM)—A Tribute to Dr. Joanne Simpson, Meteor. Monogr., No. 51, Amer. Meteor. Soc., 49–58, https://doi.org/10.1175/0065-9401(2003)029<0049:CSVOHT>2.0.CO;2.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1144 291 29
PDF Downloads 982 221 31