Theoretical Analysis of Liquid–Ice Interaction in the Unsaturated Environment with Application to the Problem of Homogeneous Mixing

M. Pinsky Department of Atmospheric Sciences, Hebrew University of Jerusalem, Jerusalem, Israel

Search for other papers by M. Pinsky in
Current site
Google Scholar
PubMed
Close
,
A. Khain Department of Atmospheric Sciences, Hebrew University of Jerusalem, Jerusalem, Israel

Search for other papers by A. Khain in
Current site
Google Scholar
PubMed
Close
, and
A. Korolev Environment and Climate Change Canada, Toronto, Ontario, Canada

Search for other papers by A. Korolev in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The process of ice–liquid water interaction in the unsaturated environment is explored both analytically and with the help of a numerical simulation. Ice–liquid water interaction via the condensation–evaporation mechanism is considered in relation to the problem of homogeneous mixing in an unmovable air volume. The process is separated into three stages: the homogenization stage, during which the rapid alignment of thermodynamic and microphysical parameters in the mixing volume takes place; the glaciation stage, during which the liquid droplets evaporate; and the ice stage, which leads to attaining a thermodynamic equilibrium. Depending on the initial temperature, humidity, and mixing ratios of liquid water and of ice water, the third stage may result in two outcomes: existence of ice particles under zero supersaturation with respect to ice or a complete disappearance of ice particles.

Three characteristic times are associated with the microphysical stages: the phase relaxation time associated with droplets, the glaciation time determined by the Wegener–Bergeron–Findeisen process, and the phase relaxation time associated with ice. Since the duration of the second and third microphysical stages may be of the same order as the homogenization time or even longer, the homogeneous mixing scenario is more probable in mixed-phase clouds than in liquid clouds.

It is shown that mixing of a mixed-phase cloud with a dry environment accelerates cloud glaciation, leading to a decrease in the glaciation time by more than 2 times. The conditions of fast ice particles’ disappearance due to sublimation are analyzed as well.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alexander Khain, alexander.khain@mail.huji.ac.il

Abstract

The process of ice–liquid water interaction in the unsaturated environment is explored both analytically and with the help of a numerical simulation. Ice–liquid water interaction via the condensation–evaporation mechanism is considered in relation to the problem of homogeneous mixing in an unmovable air volume. The process is separated into three stages: the homogenization stage, during which the rapid alignment of thermodynamic and microphysical parameters in the mixing volume takes place; the glaciation stage, during which the liquid droplets evaporate; and the ice stage, which leads to attaining a thermodynamic equilibrium. Depending on the initial temperature, humidity, and mixing ratios of liquid water and of ice water, the third stage may result in two outcomes: existence of ice particles under zero supersaturation with respect to ice or a complete disappearance of ice particles.

Three characteristic times are associated with the microphysical stages: the phase relaxation time associated with droplets, the glaciation time determined by the Wegener–Bergeron–Findeisen process, and the phase relaxation time associated with ice. Since the duration of the second and third microphysical stages may be of the same order as the homogenization time or even longer, the homogeneous mixing scenario is more probable in mixed-phase clouds than in liquid clouds.

It is shown that mixing of a mixed-phase cloud with a dry environment accelerates cloud glaciation, leading to a decrease in the glaciation time by more than 2 times. The conditions of fast ice particles’ disappearance due to sublimation are analyzed as well.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alexander Khain, alexander.khain@mail.huji.ac.il
Save
  • Bera, S., T. V. Prabha, and W. W. Grabowski, 2016: Observations of monsoon convective cloud microphysics over India and role of entrainment-mixing. J. Geophys. Res. Atmos., 121, 97679788, https://doi.org/10.1002/2016JD025133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bergeron, T., 1935: On the physics of clouds and precipitation. Proc. Fifth Assembly, Lisbon, Portugal, International Union of Geodesy and Geophysics, 156–180.

  • Burnet, F., and J.-L. Brenguier, 2007: Observational study of the entrainment-mixing process in warm convective clouds. J. Atmos. Sci., 64, 19952011, https://doi.org/10.1175/JAS3928.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Devenish, B. J., and Coauthors, 2012: Droplet growth in warm turbulent clouds. Quart. J. Roy. Meteor. Soc., 138, 14011429, https://doi.org/10.1002/qj.1897.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., S. Ghan, M. Ovchinnikov, X. Liu, P. J. Rasch, and A. Korolev, 2011: Representation of Arctic mixed-phase clouds and the Wegener-Bergeron-Findeisen process in climate models: Perspectives from a cloud-resolving study. J. Geophys. Res., 116, D00T07, https://doi.org/10.1029/2010JD015375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., and Coauthors, 2017: Secondary ice production: Current state of the science and recommendations for the future. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., 7.1–7.20, https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0014.1.

    • Crossref
    • Export Citation
  • Findeisen, W., 1938: Kolloid-meteorologische Vorgange bei Neiderschlagsbildung. Meteor. Z., 55, 121133.

  • Fridlind, A., A. Ackerman, G. McFarquhar, G. Zhang, M. Poellot, P. DeMott, A. Prenni, and A. Heymsfield, 2007: Ice properties of single layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment: 2. Model results. J. Geophys. Res., 112, D24202, https://doi.org/10.1029/2007JD008646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, H. E., G. M. Frick, J. B. Jensen, and J. G. Hudson, 2008: Entrainment, mixing, and microphysics in trade-wind cumulus. J. Meteor. Soc. Japan, 86A, 87106, https://doi.org/10.2151/jmsj.86A.87.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., P. N. Francis, H. Flentje, A. J. Illingworth, M. Quante, and J. Pelon, 2003: Characteristics of mixed-phase clouds. I: Lidar, radar and aircraft observations from CLARE’98. Quart. J. Roy. Meteor. Soc., 129, 20892116, https://doi.org/10.1256/rj.01.208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeffery, C. A., 2007: Inhomogeneous cloud evaporation, invariance, and Damköhler number. J. Geophys. Res., 112, D24S21, https://doi.org/10.1029/2007JD008789.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., 2007: Limitations of the Wegener–Bergeron–Findeisen mechanism in the evolution of mixed-phase clouds. J. Atmos. Sci., 64, 33723375, https://doi.org/10.1175/JAS4035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., 2008: Rates of phase transformations in mixed-phase clouds. Quart. J. Roy. Meteor. Soc., 134, 595608, https://doi.org/10.1002/qj.230.

  • Korolev, A. V., and G. A. Isaac, 2000: Drop growth due to high supersaturation caused by isobaric mixing. J. Atmos. Sci., 57, 16751685, https://doi.org/10.1175/1520-0469(2000)057<1675:DGDTHS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., and G. A. Isaac, 2003: Phase transformation of mixed-phase clouds. Quart. J. Roy. Meteor. Soc., 129, 1938, https://doi.org/10.1256/qj.01.203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., and I. P. Mazin, 2003: Supersaturation of water vapor in clouds. J. Atmos. Sci., 60, 29572974, https://doi.org/10.1175/1520-0469(2003)060<2957:SOWVIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., and P. R. Field, 2008: The effect of dynamics on mixed-phase clouds: Theoretical considerations. J. Atmos. Sci., 65, 6686, https://doi.org/10.1175/2007JAS2355.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., G. A. Isaac, S. Cober, J.W. Strapp, and J. Hallett, 2003: Microphysical characterization of mixed-phase clouds. Quart. J. Roy. Meteor. Soc., 129, 3966, https://doi.org/10.1256/qj.01.204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., A. Khain, M. Pinsky, and J. French, 2016: Theoretical study of mixing in liquid clouds—Part 1: Classical concept. Atmos. Chem. Phys., 16, 92359254, https://doi.org/10.5194/acp-16-9235-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latham, J., and R. L. Reed, 1977: Laboratory studies of effects of mixing on evolution of cloud droplet spectra. Quart. J. Roy. Meteor. Soc., 103, 297306, https://doi.org/10.1002/qj.49710343607.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., S. Woods, and H. Morrison, 2015: The microphysics of ice and precipitation development in tropical cumulus clouds. J. Atmos. Sci., 72, 24292445, https://doi.org/10.1175/JAS-D-14-0274.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehmann, K., H. Siebert, and R. A. Shaw, 2009: Homogeneous and inhomogeneous mixing in cumulus clouds: Dependence on local turbulence structure. J. Atmos. Sci., 66, 36413659, https://doi.org/10.1175/2009JAS3012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, C., Y. Liu, S. Niu, and S. Endo, 2014: Scale dependence of entrainment-mixing mechanisms in cumulus clouds. J. Geophys. Res. Atmos., 119, 13 87713 890, https://doi.org/10.1002/2014JD022265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCoy, D. T., I. Tan, D. L. Hartmann, M. D. Zelinka, and T. Storelvmo, 2016: On the relationships among cloud cover, mixed-phase partitioning, and planetary albedo in GCMs. J. Adv. Model. Earth Syst., 8, 650668, https://doi.org/10.1002/2015MS000589.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and S. G. Cober, 2004: Single-scattering properties of mixed-phase Arctic clouds at solar wavelengths: Impacts on radiative transfer. J. Climate, 17, 37993813, https://doi.org/10.1175/1520-0442(2004)017<3799:SPOMAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mioche, G., O. Jourdan, M. Ceccaldi, and J. Delanöe, 2015: Variability of mixed-phase clouds in the Arctic with a focus on the Svalbard region: A study based on spaceborne active remote sensing. Atmos. Chem. Phys., 15, 24452461, https://doi.org/10.5194/acp-15-2445-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mioche, G., and Coauthors, 2017: Vertical distribution of microphysical properties of Arctic springtime low-level mixed-phase clouds over the Greenland and Norwegian Seas. Atmos. Chem. Phys., 17, 12 84512 869, https://doi.org/10.5194/acp-17-12845-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. M. Yaglom, 1975: Statistical Fluid Mechanics: Mechanics of Turbulence. Vol. 2. MIT Press, 911 pp.

  • Noh, Y.-J., C. J. Seaman, T. H. Vonder Haar, and G. Lio, 2013: In situ aircraft measurements of the vertical distribution of liquid and ice water content in midlatitude mixed-phase clouds. J. Appl. Meteor. Climatol., 52, 269279, https://doi.org/10.1175/JAMC-D-11-0202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., J.-I. Yano, and A. Khain, 2017: Ice multiplication by breakup in ice–ice collisions. Part 1: Theoretical formulation. J. Atmos. Sci., 74, 17051719, https://doi.org/10.1175/JAS-D-16-0224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinsky, M., A. Khain, and A. Korolev, 2014: Analytical investigation of glaciation time in mixed-phase adiabatic cloud volumes. J. Atmos. Sci., 71, 41434157, https://doi.org/10.1175/JAS-D-13-0359.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinsky, M., A. Khain, and A. Korolev, 2015: Phase transformations in an ascending adiabatic mixed-phase cloud volume. J. Geophys. Res. Atmos., 120, 33293353, https://doi.org/10.1002/2015JD023094.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinsky, M., A. Khain, A. Korolev, and L. Magaritz-Ronen, 2016a: Theoretical investigation of mixing in warm clouds—Part 2: Homogeneous mixing. Atmos. Chem. Phys., 16, 92559272, https://doi.org/10.5194/acp-16-9255-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinsky, M., A. Khain, and A. Korolev, 2016b: Theoretical analysis of mixing in liquid clouds—Part 3: Inhomogeneous mixing. Atmos. Chem. Phys., 16, 92739297, https://doi.org/10.5194/acp-16-9273-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinto, J. O., 1998: Autumnal mixed-phase cloudy boundary layers in the Arctic. J. Atmos. Sci., 55, 20162037, https://doi.org/10.1175/1520-0469(1998)055<2016:AMPCBL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plummer, D. M., G. M. McFarquhar, R. M. Rauber, B. F. Jewett, and D. C. Leon, 2014: Structure and statistical analysis of the microphysical properties of generating cells in the comma head region of continental winter cyclones. J. Atmos. Sci., 71, 41814203, https://doi.org/10.1175/JAS-D-14-0100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2nd ed. Oxford University Press, 914 pp.

  • Rauber, R. M., and A. Tokay, 1991: An explanation for the existence of supercooled water at the tops of cold clouds. J. Atmos. Sci., 48, 10051023, https://doi.org/10.1175/1520-0469(1991)048<1005:AEFTEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Senior, C. A., and J. F. B. Mitchell, 1993: Carbon dioxide and climate: The impact of cloud parameterization. J. Climate, 6, 393418, https://doi.org/10.1175/1520-0442(1993)006,0393:CDACTI.2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., and Coauthors, 2008: A focus on mixed-phase clouds: The status of ground-based observational methods. Bull. Amer. Meteor. Soc., 89, 15491562, https://doi.org/10.1175/2008BAMS2378.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., V. P. Walden, E. Eloranta, T. Uttal, J. R. Campbell, S. M. Starkweather, and M. Shiobara, 2011: Clouds at Arctic atmospheric observatories. Part I: Occurrence and macrophysical properties. J. Appl. Meteor. Climatol., 50, 626644, https://doi.org/10.1175/2010JAMC2467.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tremblay, A., A. Glazer, W. Benoit, and R. Yu, 1996: A mixed-phase cloud scheme based on a single prognostic equation. Tellus, 48, 483500, https://doi.org/10.1034/j.1600-0870.1996.t01-3-00001.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wegener, A., 1911: Thermodynamik der Atmosphäre (in German). J. A. Barth, 331 pp.

  • Westbrook, C., and A. Illingworth, 2013: The formation of ice in a long-lived supercooled layer cloud. Quart. J. Roy. Meteor. Soc., 139, 22092222, https://doi.org/10.1002/qj.2096.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, D., 2000: The impact of a physically based microphysical scheme on the climate simulation of the Meteorological Office Unified Model. Quart. J. Roy. Meteor. Soc., 126, 12811300, https://doi.org/10.1002/qj.49712656505.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zawadzki, I., W. Szyrmer, and S. Laroche, 2000: Diagnostic of supercooled clouds from single-Doppler observations in regions of radar-detectable snow. J. Appl. Meteor., 39, 10411058, https://doi.org/10.1175/1520-0450(2000)039<1041:DOSCFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zinner, T., A. Marshak, S. Lang, J. V. Martins, and B. Mayer, 2008: Remote sensing of cloud sides of deep convection: Towards a three-dimensional retrieval of cloud particle size profiles. Atmos. Chem. Phys., 8, 47414757, https://doi.org/10.5194/acp-8-4741-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 439 132 12
PDF Downloads 252 71 7