The Behavior of Squall Lines in Horizontally Heterogeneous Coastal Environments

Kelly Lombardo Department of Marine Sciences, University of Connecticut, Groton, Connecticut

Search for other papers by Kelly Lombardo in
Current site
Google Scholar
PubMed
Close
and
Tristan Kading Department of Marine Sciences, University of Connecticut, Groton, Connecticut

Search for other papers by Tristan Kading in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Inland squall lines respond to the stable marine atmospheric boundary layer (MABL) as they move toward a coastline and offshore. As a storm’s cold pool collides with the marine layer, characteristics of both determine the resulting convective forcing mechanism over the stable layer and storm characteristics. Idealized numerical experiments exploring a parameter space of MABL characteristics show that the postcollision forcing mechanism is determined by the buoyancy of the cold pool relative to the MABL. When the outflow is less buoyant, storms are forced by a cold pool within the marine environment. When the buoyancies are equivalent, a hybrid cold pool–internal gravity wave develops after the collision. The collision between a cold pool and less buoyant MABL initiates internal waves along the stable layer, regardless of MABL depth. These waves are inefficient at lifting air into the storm, and ascent from the trailing cold pool is needed to support deep convection. Storm intensity decreases with deeper and less buoyant MABLs, in part due to the reduction in elevated instability. Precipitation is enhanced just prior to the collision between a storm and the deepest marine layers. Storms modify their environment downstream, leading to the development of a moist adiabatic unstable layer and a lowering of the level of free convection (LFC) to below the top of the deepest marine layer. An MABL moving as a sea breeze into the storm-modified air successfully lifts parcels to the new LFC, generating convective towers ahead of the squall line. This mechanism may contribute to increased coastal flash flooding risks during observed events.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kelly Lombardo, kelly.lombardo@uconn.edu

Abstract

Inland squall lines respond to the stable marine atmospheric boundary layer (MABL) as they move toward a coastline and offshore. As a storm’s cold pool collides with the marine layer, characteristics of both determine the resulting convective forcing mechanism over the stable layer and storm characteristics. Idealized numerical experiments exploring a parameter space of MABL characteristics show that the postcollision forcing mechanism is determined by the buoyancy of the cold pool relative to the MABL. When the outflow is less buoyant, storms are forced by a cold pool within the marine environment. When the buoyancies are equivalent, a hybrid cold pool–internal gravity wave develops after the collision. The collision between a cold pool and less buoyant MABL initiates internal waves along the stable layer, regardless of MABL depth. These waves are inefficient at lifting air into the storm, and ascent from the trailing cold pool is needed to support deep convection. Storm intensity decreases with deeper and less buoyant MABLs, in part due to the reduction in elevated instability. Precipitation is enhanced just prior to the collision between a storm and the deepest marine layers. Storms modify their environment downstream, leading to the development of a moist adiabatic unstable layer and a lowering of the level of free convection (LFC) to below the top of the deepest marine layer. An MABL moving as a sea breeze into the storm-modified air successfully lifts parcels to the new LFC, generating convective towers ahead of the squall line. This mechanism may contribute to increased coastal flash flooding risks during observed events.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kelly Lombardo, kelly.lombardo@uconn.edu
Save
  • Alfaro, D. A., 2017: Low-tropospheric shear in the structure of squall lines: Impacts on latent heating under layer-lifting ascent. J. Atmos. Sci., 74, 229248, https://doi.org/10.1175/JAS-D-16-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alfaro, D. A., and M. Khairoutdinov, 2015: Thermodynamic constraints on the morphology of simulated midlatitude squall lines. J. Atmos. Sci., 72, 31163137, https://doi.org/10.1175/JAS-D-14-0295.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., and T. L. Mote, 2005: Derecho hazards in the United States. Bull. Amer. Meteor. Soc., 86, 15771592, https://doi.org/10.1175/BAMS-86-11-1577.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., 2005: Spurious convective organization in simulated squall lines owing to moist absolutely unstable layers. Mon. Wea. Rev., 133, 19781997, https://doi.org/10.1175/MWR2952.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2000: Moist absolute instability: The sixth static stability state. Bull. Amer. Meteor. Soc., 81, 12071230, https://doi.org/10.1175/1520-0477(2000)081<1287:MAITSS>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., J. C. Wyngaard, and J. M. French, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 23942416, https://doi.org/10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., J. C. Knieval, and M. D. Parker, 2006: A multimodel assessment of RKW theory’s relevance to squall-line characteristics. Mon. Wea. Rev., 134, 27722792, https://doi.org/10.1175/MWR3226.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christie, D. R., K. J. Muirhead, and A. L. Hales, 1978: On solitary waves in the atmosphere. J. Atmos. Sci., 35, 805825, https://doi.org/10.1175/1520-0469(1978)035<0805:OSWITA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christie, D. R., K. J. Muirhead, and A. L. Hales, 1979: Intrusive density flows in the lower troposphere: A source of atmospheric solitons. J. Geophys. Res., 84, 49594970, https://doi.org/10.1029/JC084iC08p04959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J. C., M. A. F. Silva Dias, and C. A. Nobre, 1995: Environmental conditions associated with Amazonian squall lines: A case study. Mon. Wea. Rev., 123, 31633174, https://doi.org/10.1175/1520-0493(1995)123<3163:ECAWAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohuet, J. B., R. Romero, V. Homar, V. Ducrocq, and C. Ramis, 2011: Initiation of a severe thunderstorm over the Mediterranean Sea. Atmos. Res., 100, 603620, https://doi.org/10.1016/j.atmosres.2010.11.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., K. Lombardo, J. S. Tongue, W. Goodman, and N. Vaz, 2012: Tornadoes in the New York Metropolitan Region: Climatology and multiscale analysis of two events. Wea. Forecasting, 27, 13261348, https://doi.org/10.1175/WAF-D-12-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corfidi, S. F., M. C. Coniglio, A. E. Cohen, and C. M. Mead, 2016: A proposed revision to the definition of “Derecho.” Bull. Amer. Meteor. Soc., 97, 935949, https://doi.org/10.1175/BAMS-D-14-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crook, N. A., 1986: The effect of ambient stratification and moisture on the motion of atmospheric undular bores. J. Atmos. Sci., 43, 171181, https://doi.org/10.1175/1520-0469(1986)043<0171:TEOASA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crook, N. A., 1988: Trapping of low-level internal gravity waves. J. Atmos. Sci., 45, 15341541, https://doi.org/10.1175/1520-0469(1988)045<1533:TOLLIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Das, P., 1979: A non-Archimedean approach to the equations of convective dynamics. J. Atmos. Sci., 36, 21832190, https://doi.org/10.1175/1520-0469(1979)036<2183:ANAATT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 2003: An expression for effective buoyancy in surroundings with horizontal density gradients. J. Atmos. Sci., 60, 29222925, https://doi.org/10.1175/1520-0469(2003)060<2922:AEFEBI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., II, M. Xue, A. Shapiro, J. A. Milbrant, and A. D. Schenkman, 2016: Sensitivity of real-data simulations of the 3 May 1999 Oklahoma City tornadic supercell and associated tornadoes to multimoment microphysics. Part II: Analysis of buoyancy and dynamics pressure forces in simulated tornado-like vortices. J. Atmos. Sci., 73, 10391061, https://doi.org/10.1175/JAS-D-15-0114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, and P. M. Markowski, 2004: Is buoyancy a relative quantity? Mon. Wea. Rev., 132, 853863, https://doi.org/10.1175/1520-0493(2004)132<0853:IBARQ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and R. Ge, 1984: An atmospheric solitary gust observed with a Doppler radar, a tall tower and a surface network. J. Atmos. Sci., 41, 25592573, https://doi.org/10.1175/1520-0469(1984)041<2559:AASGOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drosdowsky, W., G. J. Holland, and R. K. Smith, 1989: Structure and evolution of north Australian cloud lines observed during AMEX Phase I. Mon. Wea. Rev., 117, 11811192, https://doi.org/10.1175/1520-0493(1989)117<1181:SAEONA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Fovell, R. G., 2002: Upstream influence of numerically simulated squall‐line storms. Quart. J. Roy. Meteor. Soc., 128, 893912, https://doi.org/10.1256/0035900021643737.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., and P.-H. Tan, 1998: The temporal behavior of numerically simulated multicell-type storms. Part II: The convective cell life cycle and cell regeneration. Mon. Wea. Rev., 126, 551577, https://doi.org/10.1175/1520-0493(1998)126,0551:TTBONS.2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., G. L. Mullendore, and S.-H. Kin, 2006: Discrete propagation in numerically simulated nocturnal squall lines. Mon. Wea. Rev., 134, 37353752, https://doi.org/10.1175/MWR3268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • French, A. J., and M. D. Parker, 2010: The response of simulated nocturnal convective systems to a developing low-level jet. J. Atmos. Sci., 67, 33843408, https://doi.org/10.1175/2010JAS3329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fulton, R., D. S. Zrníc, and R. J. Doviak, 1990: Initiation of a solitary wave family in the demise of a nocturnal thunderstorm density current. J. Atmos. Sci., 47, 319337, https://doi.org/10.1175/1520-0469(1990)047<0319:IOASWF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fulton, S. R., P. E. Ciesielski, and W. H. Schubert, 1986: Multigrid methods for elliptic problems: A review. Mon. Wea. Rev., 114, 943959, https://doi.org/10.1175/1520-0493(1986)114<0943:MMFEPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galvin, J. F. P., 1997: Sea-breeze front reaches Birmingham and beyond! Weather, 52, 3439, https://doi.org/10.1002/j.1477-8696.1997.tb06266.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garstang, M., H. L. Massie Jr., J. Halverson, S. Greco, and J. Scala, 1994: Amazon coastal squall lines. Part I: Structure and kinematics. Mon. Wea. Rev., 122, 608622, https://doi.org/10.1175/1520-0493(1994)122<0608:ACSLPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, B. M., 1991: CaPE experiment proceeds in Florida. Bull. Amer. Meteor. Soc., 72, 18671883, https://doi.org/10.1175/1520-0477(1991)072<1867:AOTROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greco, S., J. Scala, J. Halverson, H. L. Massie Jr., W.-K. Tao, and M. Garstang, 1994: Amazon coastal squall lines. Part II: Heat and moisture transports. Mon. Wea. Rev., 122, 623635, https://doi.org/10.1175/1520-0493(1994)122<0623:ACSLPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haase, S. P., and R. K. Smith, 1984: Morning glory wave clouds in Oklahoma: A case study. Mon. Wea. Rev., 112, 20782089, https://doi.org/10.1175/1520-0493(1984)112<2078:MGWCIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haase, S. P., and R. K. Smith, 1989: The numerical simulation of atmospheric gravity currents. Part II. Environments with stable layers. Geophys. Astrophys. Fluid Dyn., 46, 3551, https://doi.org/10.1080/03091928908208903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., J. B. Halverson, and I. J. Caylor, 1999: A wintertime Gulf coast squall line observed by EDOP airborne Doppler radar. Mon. Wea. Rev., 127, 29282949, https://doi.org/10.1175/1520-0493(1999)127<2928:AWGCSL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1993: Cloud Dynamics. Academic Press, 573 pp.

  • James, R. P., and P. M. Markowski, 2010: A numerical investigation of the effects of dry air aloft on deep convection. Mon. Wea. Rev., 138, 140161, https://doi.org/10.1175/2009MWR3018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeevanjee, N., and D. M. Romps, 2015: Effective buoyancy, inertial pressure, and the mechanical generation of buoyancy-layer mass flux by cold pools. J. Atmos. Sci., 72, 31993213, https://doi.org/10.1175/JAS-D-14-0349.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keyser, D., and R. A. Anthes, 1977: The applicability of a mixed-layer model of the planetary boundary layer to real-data forecasting. Mon. Wea. Rev., 105, 13511371, https://doi.org/10.1175/1520-0493(1977)105<1351:TAOAMM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kingsmill, D. E., and N. A. Crook, 2003: An observational study of atmospheric bore formation from colliding density currents. Mon. Wea. Rev., 131, 29852986, https://doi.org/10.1175/1520-0493(2003)131<2985:AOSOAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 10701096, https://doi.org/10.1175/1520-0469(1978)035<1070:TSOTDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., R. Rotunno, and W. C. Skamarock, 1997: On the propagation of internal bores. J. Fluid Mech., 331, 81106, https://doi.org/10.1017/S0022112096003710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knupp, K. R., 2006: Observational analysis of a gust front to bore to solitary wave transition within an evolving nocturnal boundary layer. J. Atmos. Sci., 63, 20162035, https://doi.org/10.1175/JAS3731.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, S. E., and W. L. Clark, 1999: A nonclassical cold front observed during COPS-91: Frontal structure and the process of severe storm initiation. J. Atmos. Sci., 56, 28622890, https://doi.org/10.1175/1520-0469(1999)056<2862:ANCFOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, S. E., P. B. Dorian, R. Ferrare, S. H. Melfi, W. C. Skillman, and D. Whiteman, 1991: Structure of an internal bore and dissipating gravity current as revealed by Raman Lidar. Mon. Wea. Rev., 119, 857887, https://doi.org/10.1175/1520-0493(1991)119<0857:SOAIBA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, S. E., W. Feltz, F. Fabry, M. Pagowski, B. Geerts, K. M. Bedka, D. O. Miller, and J. W. Wilson, 2008: Turbulent mixing processes in atmospheric bores and solitary waves deduced from profiling systems and numerical simulations. Mon. Wea. Rev., 136, 13731400, https://doi.org/10.1175/2007MWR2252.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kömüşçü, A. Ü., A. Erkan, and S. Çelik, 1998: Analysis of meteorological and terrain features leading to the İzmir flask flood. Nat. Hazards, 18, 125, https://doi.org/10.1023/A:1008078920113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lombardo, K. A., and B. A. Colle, 2011: Convective storm structures and ambient conditions associated with severe weather over the northeast United States. Wea. Forecasting, 26, 940956, https://doi.org/10.1175/WAF-D-11-00002.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lombardo, K. A., and B. A. Colle, 2012: Ambient conditions associated with the maintenance and decay of quasi-linear convective systems crossing the northeastern U.S. Coast. Mon. Wea. Rev., 140, 38053819, https://doi.org/10.1175/MWR-D-12-00050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lombardo, K. A., and B. A. Colle, 2013: Processes controlling the structure and longevity of two quasi-linear convective systems crossing the southern New England coast. Mon. Wea. Rev., 141, 37103734, https://doi.org/10.1175/MWR-D-12-00336.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lombardo, K. A., E. Sinsky, Y. Jia, M. Whitney, and J. Edson, 2016: Sensitivity of simulated sea breezes to initial conditions in complex coastal regions. Mon. Wea. Rev., 144, 12991320, https://doi.org/10.1175/MWR-D-15-0306.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lombardo, K. A., E. Sinsky, J. Edson, M. M. Whitney, and Y. Jia, 2018: Sensitivity of offshore surface fluxes and sea breezes to the spatial distribution of sea-surface temperature. Bound.-Layer Meteor., 166, 475502, https://doi.org/10.1007/s10546-017-0313-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsham, J. H., S. B. Trier, T. W. Weckwerth, and J. W. Wilson, 2011: Observations of elevated convection initiation leading to a surface-based squall line during 13 June IHOP_2002. Mon. Wea. Rev., 139, 247270, https://doi.org/10.1175/2010MWR3422.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maxworthy, T., 1980: On the formation of nonlinear internal waves from the gravitational collapse of mixed regions in two and three dimensions. J. Fluid Mech., 96, 4764, https://doi.org/10.1017/S0022112080002017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meng, Z., D. Yan, and Y. Zhang, 2013: General features of squall lines in east China. Mon. Wea. Rev., 141, 16291647, https://doi.org/10.1175/MWR-D-12-00208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, https://doi.org/10.1175/2008MWR2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nunalee, C. G., and S. Basu, 2014: Mesoscale modeling of coastal low-level jets: Implications for offshore wind resource estimation. Wind Energy 17, 11991216, https://doi.org/10.1002/we.1628.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pereira de Oliveira, F., and M. D. Oyama, 2015: Antecedent atmospheric conditions related to squall-line initiation over the northern coast of Brazil in July. Wea. Forecasting, 30, 12541264, https://doi.org/10.1175/WAF-D-14-00120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, M. D., 2008: Response of simulated squall lines to low-level cooling. J. Atmos. Sci., 65, 13231341, https://doi.org/10.1175/2007JAS2507.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rottman, J. W., and J. E. Simpson, 1989: The formation of internal bores in the atmosphere: A laboratory model. Quart. J. Roy. Meteor. Soc., 115, 941963, https://doi.org/10.1002/qj.49711548809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, https://doi.org/10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schenkman, A. D., M. Xue, and D. T. Dawson II, 2016: The cause of internal outflow surges in a high-resolution simulation of the 8 May 2003 Oklahoma City tornadic supercell. J. Atmos. Sci., 73, 353370, https://doi.org/10.1175/JAS-D-15-0112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., 2009: Mechanisms for quasi-stationary behavior in simulated heavy-rain-producing convective systems. J. Atmos. Sci., 66, 15431568, https://doi.org/10.1175/2008JAS2856.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., 2015: Sensitivity of precipitation accumulation in elevated convective systems to small changes in low-level moisture. J. Atmos. Sci., 72, 25072524, https://doi.org/10.1175/JAS-D-14-0389.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and R. H. Johnson, 2005: Organization and environmental properties of extreme-rain-producing mesoscale convective systems. Mon. Wea. Rev., 133, 961976, https://doi.org/10.1175/MWR2899.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seigel, R. B., S. C. van den Heever, and S. M. Saleeby, 2013: Mineral dust indirect effects and cloud radiative feedbacks of a simulated idealized nocturnal squall line. Atmos. Chem. Phys., 13, 44674485, https://doi.org/10.5194/acp-13-4467-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shu, C.-W., 2001: High order finite difference and finite volume WENO schemes and discontinuous Galerkin methods for CFD. ICASE Rep. 2001-11, NASA/CR-2001-210865, 16 pp.

  • Simpson, J. E., 1997: Gravity Currents in the Environment and the Laboratory. 2nd ed. Cambridge University Press, 244 pp.

  • Simpson, J. E., D. A. Mansfield, and J. R. Milford, 1977: Inland penetration of sea-breezes. Quart. J. Roy. Meteor. Soc., 103, 4776, https://doi.org/10.1002/qj.49710343504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takemi, T., 2006: Impacts of moisture profile on the evolution and organization of midlatitude squall lines under various shear conditions. Atmos. Res., 82, 3754, https://doi.org/10.1016/j.atmosres.2005.01.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tijm, A. B. C., A. J. van Delden, and A. A. M. Holtslag, 1999: The inland penetration of sea breezes. Contrib. Atmos. Phys., 72, 317328.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., C. A. Davis, D. A. Ahijevych, M. L. Weisman, and G. H. Bryan, 2006: Mechanisms supporting long-lived episodes of propagating nocturnal convection within a 7-day WRF model simulation. J. Atmos. Sci., 63, 24372461, https://doi.org/10.1175/JAS3768.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., J. H. Marsham, C. A. Davis, and D. A. Ahijevych, 2011: Numerical simulations of the postsunrise reorganization of a nocturnal mesoscale convective system during 13 June IHOP_2002. J. Atmos. Sci., 68, 29883011, https://doi.org/10.1175/JAS-D-11-0112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Delden, A., 1998: The synoptic setting of a thunder low and associated prefrontal squall line in western Europe. Meteor. Atmos. Phys., 65, 113131, https://doi.org/10.1007/BF01030272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and D. E. Kingsmill, 1995: Structure of an atmospheric undular bore generates from colliding boundaries during CaPE. Mon. Wea. Rev., 123, 13741393, https://doi.org/10.1175/1520-0493(1995)123<1374:SOAAUB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J.-J., and L. D. Carey, 2005: The development and structure of an oceanic squall-line system during the South China Sea Monsoon Experiment. Mon. Wea. Rev., 133, 15441561, https://doi.org/10.1175/MWR2933.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., 1992: The role of convectively generated rear-inflow jets in the evolution of long-lined mesoconvective systems. J. Atmos. Sci., 49, 18261847, https://doi.org/10.1175/1520-0469(1992)049<1826:TROCGR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., 1993: The genesis of severe, long-lived bow echoes. J. Atmos. Sci., 50, 645670, https://doi.org/10.1175/1520-0469(1993)050<0645:TGOSLL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520, https://doi.org/10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and R. Rotunno, 2004: “A theory for strong long-lived squall lines” revisited. J. Atmos. Sci., 61, 361382, https://doi.org/10.1175/1520-0469(2004)061<0361:ATFSLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., J. B. Klemp, and R. Rotunno, 1988: Structure and evolution of numerically simulated squall lines. J. Atmos. Sci., 45, 19902013, https://doi.org/10.1175/1520-0469(1988)045<1990:SAEONS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and W. C. Skamarock, 2002: Time-splitting methods for elastic models using forward time schemes. Mon. Wea. Rev., 130, 20882097, https://doi.org/10.1175/1520-0493(2002)130<2088:TSMFEM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, I. R., and J. E. Simpson, 1984: Jumps in layered miscible fluids. J. Fluid Mech., 140, 329342, https://doi.org/10.1017/S0022112084000628.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, M. J., and R. A. Houze Jr., 1995: Multicell squall-line structure as a manifestation of vertically trapped gravity waves. Mon. Wea. Rev., 123, 641661, https://doi.org/10.1175/1520-0493(1995)123<0641:MSLSAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 671 214 21
PDF Downloads 541 117 10