Abstract
The east Pacific warm pool exhibits basic-state variability associated with the Madden–Julian oscillation (MJO) and Caribbean low-level jet (CLLJ), which affects the development of easterly waves (EWs). This study compares and contrasts composite changes in the background environment, eddy kinetic energy (EKE) budgets, and EW tracks during MJO and CLLJ events. While previous studies have shown that the MJO influences jet activity in the east Pacific, the influence of the MJO and CLLJ on the east Pacific and EWs is not synonymous. The CLLJ is a stronger modulator of the ITCZ than the MJO, while the MJO has a more expansive influence on the northeastern portion of the basin. Anomalous low-level westerly MJO and CLLJ periods are associated with favorable conditions for EW development paralleling the Central American coast, contrary to previous findings about the relationship of the CLLJ to EWs. Easterly MJO and CLLJ periods support enhanced ITCZ EW development, although the CLLJ is a greater modulator of EW tracks in this region, which is likely associated with stronger moisture and convection variations and their subsequent influence on the EKE budget. ITCZ EW growth during easterly MJO periods is more reliant on barotropic conversion than during strong CLLJ periods, when eddy available potential energy (EAPE)-to-EKE conversion associated with ITCZ convection is more important. Thus, the influence of these phenomena on east Pacific EWs should be considered distinct.
© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).