Influence of the Madden–Julian Oscillation and Caribbean Low-Level Jet on East Pacific Easterly Wave Dynamics

Justin W. Whitaker Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Justin W. Whitaker in
Current site
Google Scholar
PubMed
Close
and
Eric D. Maloney Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Eric D. Maloney in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The east Pacific warm pool exhibits basic-state variability associated with the Madden–Julian oscillation (MJO) and Caribbean low-level jet (CLLJ), which affects the development of easterly waves (EWs). This study compares and contrasts composite changes in the background environment, eddy kinetic energy (EKE) budgets, and EW tracks during MJO and CLLJ events. While previous studies have shown that the MJO influences jet activity in the east Pacific, the influence of the MJO and CLLJ on the east Pacific and EWs is not synonymous. The CLLJ is a stronger modulator of the ITCZ than the MJO, while the MJO has a more expansive influence on the northeastern portion of the basin. Anomalous low-level westerly MJO and CLLJ periods are associated with favorable conditions for EW development paralleling the Central American coast, contrary to previous findings about the relationship of the CLLJ to EWs. Easterly MJO and CLLJ periods support enhanced ITCZ EW development, although the CLLJ is a greater modulator of EW tracks in this region, which is likely associated with stronger moisture and convection variations and their subsequent influence on the EKE budget. ITCZ EW growth during easterly MJO periods is more reliant on barotropic conversion than during strong CLLJ periods, when eddy available potential energy (EAPE)-to-EKE conversion associated with ITCZ convection is more important. Thus, the influence of these phenomena on east Pacific EWs should be considered distinct.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Justin W. Whitaker, jwwhit@atmos.colostate.edu

Abstract

The east Pacific warm pool exhibits basic-state variability associated with the Madden–Julian oscillation (MJO) and Caribbean low-level jet (CLLJ), which affects the development of easterly waves (EWs). This study compares and contrasts composite changes in the background environment, eddy kinetic energy (EKE) budgets, and EW tracks during MJO and CLLJ events. While previous studies have shown that the MJO influences jet activity in the east Pacific, the influence of the MJO and CLLJ on the east Pacific and EWs is not synonymous. The CLLJ is a stronger modulator of the ITCZ than the MJO, while the MJO has a more expansive influence on the northeastern portion of the basin. Anomalous low-level westerly MJO and CLLJ periods are associated with favorable conditions for EW development paralleling the Central American coast, contrary to previous findings about the relationship of the CLLJ to EWs. Easterly MJO and CLLJ periods support enhanced ITCZ EW development, although the CLLJ is a greater modulator of EW tracks in this region, which is likely associated with stronger moisture and convection variations and their subsequent influence on the EKE budget. ITCZ EW growth during easterly MJO periods is more reliant on barotropic conversion than during strong CLLJ periods, when eddy available potential energy (EAPE)-to-EKE conversion associated with ITCZ convection is more important. Thus, the influence of these phenomena on east Pacific EWs should be considered distinct.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Justin W. Whitaker, jwwhit@atmos.colostate.edu
Save
  • Aiyyer, A., and J. Molinari, 2008: MJO and tropical cyclogenesis in the Gulf of Mexico and eastern Pacific: Case study and idealized numerical modeling. J. Atmos. Sci., 65, 26912704, https://doi.org/10.1175/2007JAS2348.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aiyyer, A., A. Mekonnen, and C. J. Schreck, 2012: Projection of tropical cyclones on wavenumber-frequency-filtered equatorial waves. J. Climate, 25, 36533658, https://doi.org/10.1175/JCLI-D-11-00451.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Avila, L. A., and R. J. Pasch, 1992: Atlantic tropical systems of 1991. Mon. Wea. Rev., 120, 26882696, https://doi.org/10.1175/1520-0493(1992)120<2688:ATSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Avila, L. A., and J. L. Guiney, 2000: Eastern North Pacific hurricane season of 1998. Mon. Wea. Rev., 128, 29903000, https://doi.org/10.1175/1520-0493(2000)128<2990:ENPHSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Avila, L. A., R. J. Pasch, J. L. Beven, J. L. Franklin, M. B. Lawrence, S. R. Stewart, and J. G. Jiing, 2003: Eastern North Pacific hurricane season of 2001. Mon. Wea. Rev., 131, 249262, https://doi.org/10.1175/1520-0493(2003)131<0249:ASNPHS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belanger, J. I., M. T. Jelinek, and J. A. Curry, 2014: African easterly wave climatology, version 1 [ERA-Interim, 600hPa]. NOAA/National Centers for Environmental Information, accessed 25 October 2016, doi:10.7289/V5ZC80SX.

    • Crossref
    • Export Citation
  • Belanger, J. I., M. T. Jelinek, and J. A. Curry, 2016: A climatology of easterly waves in the tropical Western Hemisphere. Geosci. Data J., 3, 4049, https://doi.org/10.1002/gdj3.40.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. H. Freilich, and S. K. Esbensen, 2000: Satellite observations of the wind jets off the Pacific coast of Central America. Part I: Case studies and statistical characteristics. Mon. Wea. Rev., 128, 19932018, https://doi.org/10.1175/1520-0493(2000)128<1993:SOOTWJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, K. H., and E. K. Vizy, 2010: Hydrodynamics of the Caribbean low-level jet and its relationship to precipitation. J. Climate, 23, 14771494, https://doi.org/10.1175/2009JCLI3210.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crosbie, E., and Y. Serra, 2014: Intraseasonal modulation of synoptic-scale disturbances and tropical cyclone genesis in the eastern North Pacific. J. Climate, 27, 57245745, https://doi.org/10.1175/JCLI-D-13-00399.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferreira, R. N., and W. H. Schubert, 1997: Barotropic aspects of ITCZ breakdown. J. Atmos. Sci., 54, 261285, https://doi.org/10.1175/1520-0469(1997)054<0261:BAOIB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, N. L., 1970: Atlantic tropical systems of 1969. Mon. Wea. Rev., 98, 307314, https://doi.org/10.1175/1520-0493(1970)098<0307:ATSO>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., C. D. Thorncroft, and N. M. J. Hall, 2006: Three-dimensional structure and dynamics of African easterly waves. Part I: Observations. J. Atmos. Sci., 63, 22122230, https://doi.org/10.1175/JAS3741.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., 1993: A climatology of intense (or major) Atlantic hurricanes. Mon. Wea. Rev., 121, 17031713, https://doi.org/10.1175/1520-0493(1993)121<1703:ACOIMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. L. Franklin, 2013: Atlantic Hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, https://doi.org/10.1175/MWR-D-12-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, H.-T., 2014: Climate Algorithm Theoretical Basis Document (C-ATBD): Outgoing Longwave Radiation (OLR)—Daily. NOAA’s Climate Data Record (CDR) Program, CDRP-ATBD-0526, 46 pp.

  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122, 814837, https://doi.org/10.1175/1520-0493(1994)122<0814:OOTDTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 2000: Modulation of eastern North Pacific Hurricanes by the Madden–Julian oscillation. J. Climate, 13, 14511460, https://doi.org/10.1175/1520-0442(2000)013<1451:MOENPH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 2001: The Madden–Julian oscillation, barotropic dynamics, and North Pacific tropical cyclone formation. Part I: Observations. J. Atmos. Sci., 58, 25452558, https://doi.org/10.1175/1520-0469(2001)058<2545:TMJOBD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and S. K. Esbensen, 2003: The amplification of east Pacific Madden–Julian oscillation convection and wind anomalies during June–November. J. Climate, 16, 34823497, https://doi.org/10.1175/1520-0442(2003)016<3482:TAOEPM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and S. K. Esbensen, 2007: Satellite and buoy observations of boreal summer intraseasonal variability in the tropical northeast Pacific. Mon. Wea. Rev., 135, 319, https://doi.org/10.1175/MWR3271.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., and D. Vollaro, 2000: Planetary- and synoptic-scale influences on eastern Pacific tropical cyclogenesis. Mon. Wea. Rev., 128, 32963307, https://doi.org/10.1175/1520-0493(2000)128<3296:PASSIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., D. Knight, M. Dickinson, D. Vollaro, and S. Skubis, 1997: Potential vorticity, easterly waves, and eastern Pacific tropical cyclogenesis. Mon. Wea. Rev., 125, 26992708, https://doi.org/10.1175/1520-0493(1997)125<2699:PVEWAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nitta, T., and Y. Takayabu, 1985: Global analysis of the lower tropospheric disturbances in the tropics during the northern summer of the FGGE year. Part II: Regional characteristics of the disturbances. Pure Appl. Geophys., 123, 272292, https://doi.org/10.1007/BF00877023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pasch, R. J., and Coauthors, 2009: Eastern North Pacific hurricane season of 2006. Mon. Wea. Rev., 137, 320, https://doi.org/10.1175/2008MWR2508.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., R. Cifelli, D. J. Boccippio, S. A. Rutledge, and C. Fairall, 2003: Convection and easterly wave structures observed in the eastern Pacific warm pool during EPIC-2001. J. Atmos. Sci., 60, 17541773, https://doi.org/10.1175/1520-0469(2003)060<1754:CAEWSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rappaport, E. N., and M. Mayfield, 1992: Eastern North Pacific hurricane season of 1991. Mon. Wea. Rev., 120, 26972708, https://doi.org/10.1175/1520-0493(1992)120<2697:ENPHSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., and W. M. Frank, 2004: A climatology of waves in the equatorial region. J. Atmos. Sci., 61, 21052132, https://doi.org/10.1175/1520-0469(2004)061<2105:ACOWIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russell, J. O., A. Aiyyer, J. D. White, and W. Hannah, 2017: Revisiting the connection between African Easterly Waves and Atlantic tropical cyclogenesis. Geophys. Res. Lett., 44, 587595, https://doi.org/10.1002/2016GL071236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rydbeck, A. V., and E. D. Maloney, 2014: Energetics of east Pacific easterly waves during intraseasonal events. J. Climate, 27, 76037621, https://doi.org/10.1175/JCLI-D-14-00211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rydbeck, A. V., and E. D. Maloney, 2015: On the convective coupling and moisture organization of east Pacific easterly waves. J. Atmos. Sci., 72, 38503870, https://doi.org/10.1175/JAS-D-15-0056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rydbeck, A. V., E. D. Maloney, S.-P. Xie, J. Hafner, and J. Shaman, 2013: Remote forcing versus local feedback of east Pacific intraseasonal variability during boreal summer. J. Climate, 26, 35753596, https://doi.org/10.1175/JCLI-D-12-00499.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rydbeck, A. V., E. D. Maloney, and G. J. Alaka, 2017: In situ initiation of east Pacific easterly waves in a regional model. J. Atmos. Sci., 74, 333351, https://doi.org/10.1175/JAS-D-16-0124.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serra, Y. L., G. N. Kiladis, and M. F. Cronin, 2008: Horizontal and vertical structure of easterly waves in the Pacific ITCZ. J. Atmos. Sci., 65, 12661284, https://doi.org/10.1175/2007JAS2341.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serra, Y. L., G. N. Kiladis, and K. I. Hodges, 2010: Tracking and mean structure of easterly waves over the intra-Americas sea. J. Climate, 23, 48234840, https://doi.org/10.1175/2010JCLI3223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serra, Y. L., X. Jiang, B. Tian, J. Amador-Astua, E. D. Maloney, and G. N. Kiladis, 2014: Tropical intraseasonal modes of the atmosphere. Annu. Rev. Environ. Resour., 39, 189215, https://doi.org/10.1146/annurev-environ-020413-134219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., 1986: The three dimensional structure of synoptic-scale disturbances over the tropical Atlantic. Mon. Wea. Rev., 114, 18761891, https://doi.org/10.1175/1520-0493(1986)114<1876:TTDSOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slade, S. A., and E. D. Maloney, 2013: An intraseasonal prediction model of Atlantic and east Pacific tropical cyclone genesis. Mon. Wea. Rev., 141, 19251942, https://doi.org/10.1175/MWR-D-12-00268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tai, K.-S., and Y. Ogura, 1987: An observational study of easterly waves over the eastern Pacific in the northern summer using FGGE data. J. Atmos. Sci., 44, 339361, https://doi.org/10.1175/1520-0469(1987)044<0339:AOSOEW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorncroft, C., and K. Hodges, 2001: African easterly wave variability and its relationship to Atlantic tropical cyclone activity. J. Climate, 14, 11661179, https://doi.org/10.1175/1520-0442(2001)014<1166:AEWVAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toma, V. E., and P. J. Webster, 2010a: Oscillations of the Intertropical Convergence Zone and the genesis of easterly waves. Part I: Diagnostics and theory. Climate Dyn., 34, 587604, https://doi.org/10.1007/s00382-009-0584-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toma, V. E., and P. J. Webster, 2010b: Oscillations of the Intertropical Convergence Zone and the genesis of easterly waves. Part II: Numerical verification. Climate Dyn., 34, 605613, https://doi.org/10.1007/s00382-009-0585-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., 2007: Variability of the Caribbean Low-Level Jet and its relations to climate. Climate Dyn., 29, 411422, https://doi.org/10.1007/s00382-007-0243-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., and S.-K. Lee, 2007: Atlantic warm pool, Caribbean low-level jet, and their potential impact on Atlantic hurricanes. Geophys. Res. Lett., 34, L02703, https://doi.org/10.1029/2006GL028579.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and J. R. Holton, 1982: Cross-equatorial response to middle-latitude forcing in a zonally varying basic state. J. Atmos. Sci., 39, 722733, https://doi.org/10.1175/1520-0469(1982)039<0722:CERTML>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, https://doi.org/10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., H. Xu, W. S. Kessler, and M. Nonaka, 2005: Air–sea interaction over the eastern Pacific warm pool: Gap winds, thermocline dome, and atmospheric convection. J. Climate, 18, 520, https://doi.org/10.1175/JCLI-3249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanai, M., and R. H. Johnson, 1993: Impacts of cumulus convection on thermodynamic fields. The Representation of Cumulus Convection in Numerical Models of the Atmosphere, Meteor. Monogr., Vol. 46, Amer. Meteor. Soc., 39–62.

    • Crossref
    • Export Citation
  • Zehnder, J. A., 1991: The interaction of planetary-scale tropical easterly waves with topography: A mechanism for the initiation of tropical cyclones. J. Atmos. Sci., 48, 12171230, https://doi.org/10.1175/1520-0469(1991)048<1217:TIOPST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zehnder, J. A., D. M. Powell, and D. L. Ropp, 1999: The interaction of easterly waves, orography, and the intertropical convergence zone in the genesis of eastern Pacific tropical cyclones. Mon. Wea. Rev., 127, 15661585, https://doi.org/10.1175/1520-0493(1999)127<1566:TIOEWO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden-Julian Oscillation. Rev. Geophys., 43, RG2003, https://doi.org/10.1029/2004RG000158.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 715 121 17
PDF Downloads 369 84 14