Comparison of Nonlinear Local Lyapunov Vectors and Bred Vectors in Estimating the Spatial Distribution of Error Growth

Jie Feng School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Jie Feng in
Current site
Google Scholar
PubMed
Close
,
Jianping Li State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global Change and Earth System Science, Beijing Normal University, Beijing, and Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Jianping Li in
Current site
Google Scholar
PubMed
Close
,
Ruiqiang Ding State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, and College of Earth Science, University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Ruiqiang Ding in
Current site
Google Scholar
PubMed
Close
, and
Zoltan Toth Global Systems Division, NOAA/OAR/ESRL, Boulder, Colorado

Search for other papers by Zoltan Toth in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Instabilities play a critical role in understanding atmospheric predictability and improving weather forecasting. The bred vectors (BVs) are dynamically evolved and flow-dependent nonlinear perturbations, indicating the most unstable modes of the underlying flow. Especially over smaller areas, however, BVs with different initial seeds may to some extent be constrained to a small subspace, missing potential forecast error growth along other unstable perturbation directions.

In this paper, the authors study the nonlinear local Lyapunov vectors (NLLVs) that are designed to capture an orthogonal basis spanning the most unstable perturbation subspace, thus potentially ameliorating the limitation of BVs. The NLLVs are theoretically related to the linear Lyapunov vectors (LVs), which also form an orthogonal basis. Like BVs, NLLVs are generated by dynamically evolving perturbations with a full nonlinear model. In simulated forecast experiments, a set of mutually orthogonal NLLVs show an advantage in predicting the structure of forecast error growth when compared to using a set of BVs that are not fully independent. NLLVs are also found to have a higher local dimension, enabling them to better capture localized instabilities, leading to increased ensemble spread.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Jianping Li, ljp@bnu.edu.cn

Abstract

Instabilities play a critical role in understanding atmospheric predictability and improving weather forecasting. The bred vectors (BVs) are dynamically evolved and flow-dependent nonlinear perturbations, indicating the most unstable modes of the underlying flow. Especially over smaller areas, however, BVs with different initial seeds may to some extent be constrained to a small subspace, missing potential forecast error growth along other unstable perturbation directions.

In this paper, the authors study the nonlinear local Lyapunov vectors (NLLVs) that are designed to capture an orthogonal basis spanning the most unstable perturbation subspace, thus potentially ameliorating the limitation of BVs. The NLLVs are theoretically related to the linear Lyapunov vectors (LVs), which also form an orthogonal basis. Like BVs, NLLVs are generated by dynamically evolving perturbations with a full nonlinear model. In simulated forecast experiments, a set of mutually orthogonal NLLVs show an advantage in predicting the structure of forecast error growth when compared to using a set of BVs that are not fully independent. NLLVs are also found to have a higher local dimension, enabling them to better capture localized instabilities, leading to increased ensemble spread.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Jianping Li, ljp@bnu.edu.cn
Save
  • Abarbanel, H. D. I., R. Brown, and M. B. Kennel, 1991: Variation of Lyapunov exponents on a strange attractor. J. Nonlinear Sci., 1, 175199, https://doi.org/10.1007/BF01209065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Annan, J. D., 2004: On the orthogonality of bred vectors. Mon. Wea. Rev., 132, 843849, https://doi.org/10.1175/1520-0493(2004)132<0843:OTOOBV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aurell, E., G. Boffetta, A. Crisanti, G. Paladin, and A. Vulpiani, 1997: Predictability in the large: An extension of the concept of Lyapunov exponent. J. Phys., 30A, 126, https://doi.org/10.1088/0305-4470/30/1/003.

    • Search Google Scholar
    • Export Citation
  • Balci, N., A. L. Mazzucato, J. M. Restrepo, and G. R. Sell, 2012: Ensemble dynamics and bred vectors. Mon. Wea. Rev., 140, 23082334, https://doi.org/10.1175/MWR-D-10-05054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benettin, G., L. Galgani, A. Giorgilli, and J. M. Strelcyn, 1980: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems: A method for computing all of them. Part 1: Theory. Meccanica, 15, 920, https://doi.org/10.1007/BF02128236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., and Z. Toth, 1999: Ensemble transformation and adaptive observations. J. Atmos. Sci., 56, 17481765, https://doi.org/10.1175/1520-0469(1999)056<1748:ETAAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129, 420436, https://doi.org/10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowler, N., 2006: Comparison of error breeding, singular vectors, random perturbations and ensemble Kalman filter perturbations strategies on a simple model. Tellus, 58A, 538548, https://doi.org/10.1111/j.1600-0870.2006.00197.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buizza, R., and T. N. Palmer, 1995: The singular-vector structure of the atmospheric global circulation. J. Atmos. Sci., 52, 14341456, https://doi.org/10.1175/1520-0469(1995)052<1434:TSVSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buizza, R., P. L. Houtekamer, Z. Toth, G. Pellerin, M. Wei, and Y. Zhu, 2005: A comparison of the ECMWF, MSC, and NCEP global ensemble prediction systems. Mon. Wea. Rev., 133, 10761097, https://doi.org/10.1175/MWR2905.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, B., J. Li, and R. Ding, 2006: Nonlinear local Lyapunov exponent and atmospheric predictability research. Sci. China, 49D, 11111120, https://doi.org/10.1007/s11430-006-1111-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corazza, M., E. Kalnay, D. J. Patil, S.-C. Yang, R. Morss, I. Szunyogh, B. R. Hunt, and J. A. Yorke, 2003: Use of the breeding technique to estimate the structure of the analysis “errors of the day.” Nonlinear Processes Geophys., 10, 233243, https://doi.org/10.5194/npg-10-233-2003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, R., and J. Li, 2007: Nonlinear finite-time Lyapunov exponent and predictability. Phys. Lett., 364A, 396400, https://doi.org/10.1016/j.physleta.2006.11.094.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, R., J. Li, and K. Ha, 2008: Nonlinear local Lyapunov exponent and quantification of local predictability. Chin. Phys. Lett., 25, 19191922, https://doi.org/10.1088/0256-307X/25/5/109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, W., M. Mu, and B. Wang, 2004: Conditional nonlinear optimal perturbation as the optimal precursors for El Nino–Southern Oscillation events. J. Geophys. Res., 109, D23105, https://doi.org/10.1029/2004JD004756.

    • Search Google Scholar
    • Export Citation
  • Feng, J., R. Ding, D. Liu, and J. Li, 2014: The application of nonlinear local Lyapunov vectors to ensemble predictions in the Lorenz systems. J. Atmos. Sci., 71, 35543567, https://doi.org/10.1175/JAS-D-13-0270.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, J., R. Ding, J. Li, and D. Liu, 2016: Comparison of nonlinear local Lyapunov vectors with bred vectors, random perturbations and ensemble transform Kalman filter strategies in a barotropic model. Adv. Atmos. Sci., 33, 10361046, https://doi.org/10.1007/s00376-016-6003-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodman, J. C., and J. Marshall, 2002: Using neutral singular vectors to study low-frequency atmospheric variability. J. Atmos. Sci., 59, 32063222, https://doi.org/10.1175/1520-0469(2002)059<3206:UNSVTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greybush, S. J., E. Kalnay, M. J. Hoffman, and R. J. Wilson, 2013: Identifying Martian atmospheric instabilities and their physical origins using bred vectors. Quart. J. Roy. Meteor. Soc., 139, 639653, https://doi.org/10.1002/qj.1990.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., C. Snyder, and R. E. Morss, 2002: Analysis-error statistics of a quasigeostrophic model using three-dimensional variational assimilation. Mon. Wea. Rev., 130, 27772790, https://doi.org/10.1175/1520-0493(2002)130<2777:AESOAQ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796811, https://doi.org/10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, 341 pp.

    • Crossref
    • Export Citation
  • Kalnay, E., M. Corazza, and M. Cai, 2002: Are bred vectors the same as Lyapunov vectors? Preprints, Symp. on Observations, Data Assimilation, and Probabilistic Prediction, Orlando, FL, Amer. Meteor. Soc., 173–177.

  • Keller, J. D., A. Hense, L. Kornblueh, and A. Rhodin, 2010: On the orthogonalization of bred vectors. Wea. Forecasting, 25, 12191234, https://doi.org/10.1175/2010WAF2222334.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., and J. Chou, 1997: The existence of the atmosphere attractor. Sci. China, 40D, 215224, https://doi.org/10.1007/BF02878381.

  • Li, J., and S. Wang, 2008: Some mathematical and numerical issues in geophysical fluid dynamics and climate dynamics. Commun. Comput. Phys., 3, 759793.

    • Search Google Scholar
    • Export Citation
  • Li, J., and R. Ding, 2011: Temporal–spatial distribution of atmospheric predictability limit by local dynamical analogs. Mon. Wea. Rev., 139, 32653283, https://doi.org/10.1175/MWR-D-10-05020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., and R. Ding, 2015: Seasonal and interannual weather prediction. Encyclopedia of Atmospheric Sciences, 2nd ed. Academic Press, 303–316.

    • Crossref
    • Export Citation
  • Lorenz, E. N., 1963a: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130141, https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1963b: The predictability of hydrodynamic flow. Trans. N. Y. Acad. Sci., 25, 409432, https://doi.org/10.1111/j.2164-0947.1963.tb01464.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., and K. A. Emanuel, 1998: Optimal sites for supplementary weather observations: Simulation with a small model. J. Atmos. Sci., 55, 399414, https://doi.org/10.1175/1520-0469(1998)055<0399:OSFSWO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., and F. Molteni, 1993: Toward a dynamical understanding of planetary-scale flow regimes. J. Atmos. Sci., 50, 17921818, https://doi.org/10.1175/1520-0469(1993)050<1792:TADUOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molteni, F., and T. N. Palmer, 1993: Predictability and finite time instability of the northern winter circulation. Quart. J. Roy. Meteor. Soc., 119, 269298, https://doi.org/10.1002/qj.49711951004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molteni, F., R. Buizza, T. N. Palmer, and T. Petroliagis, 1996: The new ECMWF ensemble prediction system: Methodology and validation. Quart. J. Roy. Meteor. Soc., 122, 73119, https://doi.org/10.1002/qj.49712252905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mu, M., 2013: Methods, current status, and prospect of targeted observation. Sci. China Earth Sci., 56, 19972005, https://doi.org/10.1007/s11430-013-4727-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mu, M., W. S. Duan, and B. Wang, 2003: Conditional nonlinear optimal perturbation and its applications. Nonlinear Processes Geophys., 10, 493501, https://doi.org/10.5194/npg-10-493-2003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mu, M., W. S. Duan, and B. Wang, 2007: Season-dependent dynamics of nonlinear optimal error growth and El Niño-Southern Oscillation predictability in a theoretical model. J. Geophys. Res., 112, D10113, https://doi.org/10.1029/2005JD006981.

    • Search Google Scholar
    • Export Citation
  • Mu, M., F. F. Zhou, and H. L. Wang, 2009: A method to identify the sensitive areas in targeting for tropical cyclone prediction: Conditional nonlinear optimal perturbation. Mon. Wea. Rev., 137, 16231639, https://doi.org/10.1175/2008MWR2640.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, C. E., P. L. Read, and S. R. Lewis, 2004: Investigating atmospheric predictability on Mars using breeding vectors in a general-circulation model. Quart. J. Roy. Meteor. Soc., 130, 29712989, https://doi.org/10.1256/qj.03.209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oseledec, V. I., 1968: A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems. Trans. Moscow Math. Soc., 19, 197231.

    • Search Google Scholar
    • Export Citation
  • Patil, D. J., B. R. Hunt, E. Kanlay, J. A. Yorke, and E. Ott, 2001: Local low dimensionality of atmospheric dynamics. Phys. Rev. Lett., 86, 58785881, https://doi.org/10.1103/PhysRevLett.86.5878.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patil, D. J., I. Szunyogh, A. V. Zimin, B. R. Hunt, E. Ott, E. Kalnay, and J. A. Yorke, 2003: Local low dimensionality and relation to effects of targeted weather observations. Proc. Seventh Experimental Chaos Conf., San Diego, CA, American Institute of Physics, 139153, https://doi.org/10.1063/1.1612207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peña, M., Z. Toth, and M. Wei, 2010: Controlling noise in ensemble data assimilation schemes. Mon. Wea. Rev., 138, 15021512, https://doi.org/10.1175/2009MWR2854.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Primo, C., M. A. Rodriguez, and J. M. Gutierrez, 2008: Logarithmic bred vectors. A new ensemble method with adjustable spread and calibration time. J. Geophys. Res., 113, D05116, https://doi.org/10.1029/2007JD008998.

    • Search Google Scholar
    • Export Citation
  • Ruelle, D., and F. Takens, 1971: One the nature of turbulence. Commun. Math. Phys., 20, 167192, https://doi.org/10.1007/BF01646553.

  • Szunyogh, I., E. Kainay, and Z. Toth, 1997: A comparison of Lyapunov vectors and optimal vectors in a low-resolution GCM. Tellus, 49A, 200227, https://doi.org/10.3402/tellusa.v49i2.14467.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74, 23172330, https://doi.org/10.1175/1520-0477(1993)074<2317:EFANTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toth, Z., and E. Kalnay, 1997: Ensemble forecasting at NCEP: The breeding method. Mon. Wea. Rev., 125, 32973318, https://doi.org/10.1175/1520-0493(1997)125<3297:EFANAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toth, Z., I. Szunyogh, and E. Kalnay, 1999: Comments on “Notes on the appropriateness of ‘bred modes’ for generating initial perturbations used in ensemble prediction.” Tellus, 51A, 442449, https://doi.org/10.3402/tellusa.v51i3.13594.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trevisan, A., and R. Legnani, 1995: Transient error growth and local predictability: A study in the Lorenz system. Tellus, 47A, 103117, https://doi.org/10.3402/tellusa.v47i1.11496.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trevisan, A., and F. Uboldi, 2004: Assimilation of standard and targeted observations within the unstable subspace of the observation–analysis–forecast cycle system. J. Atmos. Sci., 61, 103113, https://doi.org/10.1175/1520-0469(2004)061<0103:AOSATO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uboldi, F., A. Trevisan, and A. Carrassi, 2005: Developing a dynamically based assimilation method for targeted and standard observations. Nonlinear Processes Geophys., 12, 149156, https://doi.org/10.5194/npg-12-149-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vannitsem, S., and C. Nicolis, 1997: Lyapunov vectors and error growth patterns in a T21L3 quasigeostrophic model. J. Atmos. Sci., 54, 347361, https://doi.org/10.1175/1520-0469(1997)054<0347:LVAEGP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vannitsem, S., and C. Nicolis, 1998: Dynamics of fine-scale versus averaged observables in a T21L3 quasi-geostrophic model. Quart. J. Roy. Meteor. Soc., 124, 22012226, https://doi.org/10.1002/qj.49712455103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., and C. Bishop, 2003: A comparison of breeding and ensemble transform Kalman filter ensemble forecast schemes. J. Atmos. Sci., 60, 11401158, https://doi.org/10.1175/1520-0469(2003)060<1140:ACOBAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, M., and Z. Toth, 2003: A new measurement of ensemble performance: Perturbation versus error correlation analysis (PECA). Mon. Wea. Rev., 131, 15491565, https://doi.org/10.1175//1520-0493(2003)131<1549:ANMOEP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, M., and J. S. Frederiksen, 2004: Error growth and dynamical vectors during Southern Hemisphere blocking. Nonlinear Processes Geophys., 11, 99118, https://doi.org/10.5194/npg-11-99-2004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, M., Z. Toth, R. Wobus, Y. Zhu, C. H. Bishop, and X. Wang, 2006: Ensemble transform Kalman filter-based ensemble perturbations in an operational global prediction system at NCEP. Tellus, 58A, 2844, https://doi.org/10.1111/j.1600-0870.2006.00159.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, M., Z. Toth, R. Wobus, and Y. Zhu, 2008: Initial perturbations based on the ensemble transform (ET) technique in the NCEP global operational forecast system. Tellus, 60A, 6279, https://doi.org/10.1111/j.1600-0870.2007.00273.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolf, A., J. B. Swift, H. L. Swinney, and J. A. Vastano, 1985: Determining Lyapunov exponents from a time series. Physica D, 16, 285317, https://doi.org/10.1016/0167-2789(85)90011-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S. C., C. Keppenne, M. R. Rienecker, and E. Kalnay, 2009: Application of coupled bred vectors to seasonal-to-interannual forecasting and ocean data assimilation. J. Climate, 22, 28502870, https://doi.org/10.1175/2008JCLI2427.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., W. Duan, and X. Zhi, 2015: Using CMIP5 model outputs to investigate the initial errors that cause the “spring predictability barrier” for El Niño events. Sci. China Earth Sci., 58, 685696, https://doi.org/10.1007/s11430-014-4994-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 435 107 10
PDF Downloads 305 89 9