Abstract
Evidence from models and observations suggests that the vertical distribution of entropy in the extratropical troposphere reflects the horizontal distribution of entropy at the surface. This isentropic linkage, which is accomplished through moist isentropic mass transport driven by extratropical waves, becomes more apparent when the effect of latent heat release by condensing moist parcels is accounted for. This study focuses on the stratification of the Arctic troposphere, which is connected by moist isentropes to the midlatitude surface. A relatively simple moist general circulation model without radiative feedbacks involving water vapor or clouds is used to study the linkage between the midlatitude surface and the Arctic midtroposphere. Zonally symmetric midlatitude thermal perturbations switched on at the surface drive a moist potential temperature response in the Arctic midtroposphere with a lag of about 2 weeks. This response increases the gross moist vertical stability in the Arctic while generally decreasing it, or increasing it only weakly, in the midlatitudes. The moist isentropic streamfunction is shifted poleward owing to the poleward entropy flux response and is shifted upward (i.e., to higher entropy) owing to the zonal-mean entropy response. The results suggest a potential novel mechanism by which the midlatitudes might influence polar lapse rates and their associated radiative feedbacks.
© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).