A Grid-Refinement-Based Approach for Modeling the Convective Boundary Layer in the Gray Zone: Algorithm Implementation and Testing

Bowen Zhou Key Laboratory for Mesoscale Severe Weather, Ministry of Education, and School of Atmospheric Sciences, Nanjing University, Nanjing, China

Search for other papers by Bowen Zhou in
Current site
Google Scholar
PubMed
Close
,
Ming Xue Key Laboratory for Mesoscale Severe Weather, Ministry of Education, and School of Atmospheric Sciences, Nanjing University, Nanjing, China, and Center for Analysis and Prediction of Storms, and School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Ming Xue in
Current site
Google Scholar
PubMed
Close
, and
Kefeng Zhu Key Laboratory for Mesoscale Severe Weather, Ministry of Education, and School of Atmospheric Sciences, Nanjing University, Nanjing, China

Search for other papers by Kefeng Zhu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A grid-refinement-based method is implemented in a community atmospheric model to improve the representation of convective boundary layer (CBL) turbulence on gray-zone [i.e., ~O(1) km] grids. At this resolution, CBL convection is partially resolved and partially subgrid scale (SGS), such that neither traditional mesoscale planetary boundary layer (PBL) schemes nor SGS closures for large-eddy simulations (LESs) are appropriate. The proposed method utilizes two-way interactive nesting to refine the horizontal resolution of the unstable surface layer of the daytime CBL. SGS turbulent mixing in the fine nest and coarse parent grids are parameterized by an LES turbulence closure and a PBL scheme, respectively. The method does not rely on predetermined empirical functions to introduce grid (scale) dependency and in theory works with any PBL scheme. Compared to the stand-alone gray-zone simulation, the proposed approach shows improvements in terms of higher-order statistics, the timing of the onset of resolved convection, and the convective structures. A deficiency of the method exists when the nest domain is limited to the surface layer; the convective structures become gradually contaminated by spurious convection on the parent gray-zone grid. A deeper nest domain alleviates the issue at increased computational costs.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bowen Zhou, zhoubowen@nju.edu.cn

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-16-0376.1

Abstract

A grid-refinement-based method is implemented in a community atmospheric model to improve the representation of convective boundary layer (CBL) turbulence on gray-zone [i.e., ~O(1) km] grids. At this resolution, CBL convection is partially resolved and partially subgrid scale (SGS), such that neither traditional mesoscale planetary boundary layer (PBL) schemes nor SGS closures for large-eddy simulations (LESs) are appropriate. The proposed method utilizes two-way interactive nesting to refine the horizontal resolution of the unstable surface layer of the daytime CBL. SGS turbulent mixing in the fine nest and coarse parent grids are parameterized by an LES turbulence closure and a PBL scheme, respectively. The method does not rely on predetermined empirical functions to introduce grid (scale) dependency and in theory works with any PBL scheme. Compared to the stand-alone gray-zone simulation, the proposed approach shows improvements in terms of higher-order statistics, the timing of the onset of resolved convection, and the convective structures. A deficiency of the method exists when the nest domain is limited to the surface layer; the convective structures become gradually contaminated by spurious convection on the parent gray-zone grid. A deeper nest domain alleviates the issue at increased computational costs.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bowen Zhou, zhoubowen@nju.edu.cn

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-16-0376.1

Save
  • Arakawa, A., J. H. Jung, and C. M. Wu, 2011: Toward unification of the multiscale modeling of the atmosphere. Atmos. Chem. Phys., 11, 37313742, https://doi.org/10.5194/acp-11-3731-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bougeault, P., and P. Lacarrere, 1989: Parameterization of orography-induced turbulence in a mesobeta-scale model. Mon. Wea. Rev., 117, 18721890, https://doi.org/10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brasseur, J. G., and T. Wei, 2010: Designing large-eddy simulation of the turbulent boundary layer to capture law-of-the-wall scaling. Phys. Fluids, 22, 021303, https://doi.org/10.1063/1.3319073.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caughey, S. J., and S. G. Palmer, 1979: Some aspects of turbulence structure through the depth of the convective boundary layer. Quart. J. Roy. Meteor. Soc., 105, 811827, https://doi.org/10.1002/qj.49710544606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ching, J., R. Rotunno, M. LeMone, A. Martilli, B. Kosovic, P. A. Jimenez, and J. Dudhia, 2014: Convectively induced secondary circulations in fine-grid mesoscale numerical weather prediction models. Mon. Wea. Rev., 142, 32843302, https://doi.org/10.1175/MWR-D-13-00318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chow, F. K., R. L. Street, M. Xue, and J. H. Ferziger, 2005: Explicit filtering and reconstruction turbulence modeling for large-eddy simulation of neutral boundary layer flow. J. Atmos. Sci., 62, 20582077, https://doi.org/10.1175/JAS3456.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, T., and R. Farley, 1984: Severe downslope windstorm calculations in 2 and 3 spatial dimensions using anelastic interactive grid nesting: A possible mechanism for gustiness. J. Atmos. Sci., 41, 329350, https://doi.org/10.1175/1520-0469(1984)041<0329:SDWCIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarke, R. H., A. J. Dyer, R. R. Brook, D. G. Reid, and A. J. Troup, 1971: The Wangara experiment: Boundary layer data. CSIRO Division of Meteorological Physics Tech. Paper 19, 340 pp.

  • Daniels, M. H., K. A. Lundquist, J. D. Mirocha, D. J. Wiersema, and F. K. Chow, 2016: A new vertical grid nesting capability in the Weather Research and Forecasting (WRF) Model. Mon. Wea. Rev., 144, 37253747, https://doi.org/10.1175/MWR-D-16-0049.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J., 1974: Three-dimensional numerical study of the height and mean structure of a heated planetary boundary layer. Bound.-Layer Meteor., 7, 81106, https://doi.org/10.1007/BF00224974.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Efstathiou, G. A., R. J. Beare, S. Osborne, and A. P. Lock, 2016: Grey zone simulations of the morning convective boundary layer development. J. Geophys. Res. Atmos., 121, 47694782, https://doi.org/10.1002/2016JD024860.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gentine, P., G. Bellon, and C. C. van Heerwaarden, 2015: A closer look at boundary layer inversion in large-eddy simulations and bulk models: Buoyancy-driven case. J. Atmos. Sci., 72, 728749, https://doi.org/10.1175/JAS-D-13-0377.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibbs, J. A., E. Fedorovich, and A. M. J. van Eijk, 2011: Evaluating Weather Research and Forecasting (WRF) Model predictions of turbulent flow parameters in a dry convective boundary layer. J. Appl. Meteor. Climatol., 50, 24292444, https://doi.org/10.1175/2011JAMC2661.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, L. M., and D. R. Durran, 2010: An idealized comparison of one-way and two-way grid nesting. Mon. Wea. Rev., 138, 21742187, https://doi.org/10.1175/2010MWR3080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holtslag, A. M., and C.-H. Moeng, 1991: Eddy diffusivity and countergradient transport in the convective atmospheric boundary layer. J. Atmos. Sci., 48, 16901698, https://doi.org/10.1175/1520-0469(1991)048<1690:EDACTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Honnert, R., V. Masson, and F. Couvreux, 2011: A diagnostic for evaluating the representation of turbulence in atmospheric models at the kilometric scale. J. Atmos. Sci., 68, 31123131, https://doi.org/10.1175/JAS-D-11-061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, J. C. R., J. C. Kaimal, and J. E. Gaynor, 1988: Eddy structure in the convective boundary layer—New measurements and new concepts. Quart. J. Roy. Meteor. Soc., 114, 827858, https://doi.org/10.1002/qj.49711448202.

    • Search Google Scholar
    • Export Citation
  • Huq, S., F. De Roo, S. Raasch, and M. Mauder, 2014: Vertical grid nesting for improved surface layer resolution in large-eddy simulation. 21st Symp. on Boundary Layers and Turbulence, Leeds, United Kingdom, Amer. Meteor. Soc., 9B.6, https://ams.confex.com/ams/21BLT/webprogram/Paper247755.html.

  • Ito, J., H. Niino, M. Nakanishi, and C.-H. Moeng, 2015: An extension of the Mellor–Yamada model to the terra incognita zone for dry convective mixed layers in the free convection regime. Bound.-Layer Meteor., 157, 2343, https://doi.org/10.1007/s10546-015-0045-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., and J. J. Finnigan, 1994: Atmospheric Boundary Layer Flows: Their Structure and Measurement. Oxford University Press, 289 pp.

    • Crossref
    • Export Citation
  • Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 10701096, https://doi.org/10.1175/1520-0469(1978)035<1070:TSOTDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., G. Tripoli, and M. Bender, 1979: Design of a movable nested-mesh primitive equation model. Mon. Wea. Rev., 107, 239249, https://doi.org/10.1175/1520-0493(1979)107<0239:DOAMNM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., and B. B. Stankov, 1986: Length scales in the convective boundary layer. J. Atmos. Sci., 43, 11981209, https://doi.org/10.1175/1520-0469(1986)043<1198:LSITCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, D., 1967: The representation of small-scale turbulence in numerical simulation experiments. Proc. IBM Scientific Symp. on Environmental Science, White Plains, NY, IBM, 195–210.

  • Lundquist, K. A., M. H. Daniels, J. D. Mirocha, D. J. Wiersema, and F. K. Chow, 2016: A new vertical grid nesting capability for multiscale simulations using the WRF Model. 22nd Symp. on Boundary Layers and Turbulence, Salt Lake City, UT, Amer. Meteor. Soc., 3B.5, https://ams.confex.com/ams/32AgF22BLT3BG/webprogram/Paper295892.html.

  • Mahrt, L., 2014: Stably stratified atmospheric boundary layers. Annu. Rev. Fluid Mech., 46, 2345, https://doi.org/10.1146/annurev-fluid-010313-141354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mirocha, J., G. Kirkil, E. Bou-Zeid, F. K. Chow, and B. Kosovic, 2013: Transition and equilibration of neutral atmospheric boundary layer flow in one-way nested large-eddy simulations using the Weather Research and Forecasting Model. Mon. Wea. Rev., 141, 918940, https://doi.org/10.1175/MWR-D-11-00263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C. H., J. Dudhia, J. B. Klemp, and P. P. Sullivan, 2007: Examining two-way grid nesting for large eddy simulation of the PBL using the WRF Model. Mon. Wea. Rev., 135, 22952311, https://doi.org/10.1175/MWR3406.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muñoz-Esparza, D., B. Kosović, J. Mirocha, and J. van. Beeck, 2014: Bridging the transition from mesoscale to microscale turbulence in numerical weather prediction models. Bound.-Layer Meteor., 153, 409440, https://doi.org/10.1007/s10546-014-9956-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muñoz-Esparza, D., J. K. Lundquist, J. A. Sauer, B. Kosović, and R. R. Linn, 2017: Coupled mesoscale-LES modeling of a diurnal cycle during the CWEX-13 field campaign: From weather to boundary-layer eddies. J. Adv. Model. Earth Syst., 9, 15721594, https://doi.org/10.1002/2017MS000960.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., and Coauthors, 1992: A comprehensive meteorological modeling system—RAMS. Meteor. Atmos. Phys., 49, 6991, https://doi.org/10.1007/BF01025401.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shin, H. H., and S.-Y. Hong, 2013: Analysis of resolved and parameterized vertical transports in convective boundary layers at gray-zone resolutions. J. Atmos. Sci., 70, 32483261, https://doi.org/10.1175/JAS-D-12-0290.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shin, H. H., and S.-Y. Hong, 2015: Representation of the subgrid-scale turbulent transport in convective boundary layers at gray-zone resolutions. Mon. Wea. Rev., 143, 250271, https://doi.org/10.1175/MWR-D-14-00116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shin, H. H., and J. Dudhia, 2016: Evaluation of PBL parameterizations in WRF at subkilometer grid spacings: Turbulence statistics in the dry convective boundary layer. Mon. Wea. Rev., 144, 11611177, https://doi.org/10.1175/MWR-D-15-0208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, 666 pp.

    • Crossref
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and C. H. Moeng, 1996: A grid nesting method for large-eddy simulation of planetary boundary-layer flows. Bound.-Layer Meteor., 80, 167202, https://doi.org/10.1007/BF00119016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, W. Y., and C. Z. Chang, 1986: Diffusion model for a convective layer. 1. Numerical simulation of convective boundary layer. J. Climate Appl. Meteor., 25, 14451453, https://doi.org/10.1175/1520-0450(1986)025<1445:DMFACL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troen, I., and L. Mahrt, 1986: A simple model of the atmospheric boundary-layer; sensitivity to surface evaporation. Bound.-Layer Meteor., 37, 129148, https://doi.org/10.1007/BF00122760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walko, R. L., C. J. Tremback, R. A. Pielke, and W. R. Cotton, 1995: An interactive nesting algorithm for stretched grids and variable nesting ratios. J. Appl. Meteor., 34, 994999, https://doi.org/10.1175/1520-0450(1995)034<0994:AINAFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 2004: Toward numerical modeling in the “terra incognita.” J. Atmos. Sci., 61, 18161826, https://doi.org/10.1175/1520-0469(2004)061<1816:TNMITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., K. K. Droegemeier, V. Wong, A. Shapiro, and K. Brewster, 1995: Advanced regional prediction system ARPS version 4.0 user’s guide. Center for Analysis and Prediction of Storms Tech. Rep., 398 pp.

  • Xue, M., J. Zong, and K. K. Droegemeier, 1996: Parameterization of PBL turbulence in a multi-scale nonhydrostatic model. Preprints, 11th Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., 363–365.

  • Xue, M., K. K. Droegemeier, and V. Wong, 2000: The Advanced Regional Prediction System (ARPS)—A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification. Meteor. Atmos. Phys., 75, 161193, https://doi.org/10.1007/s007030070003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., and Coauthors, 2001: The Advanced Regional Prediction System (ARPS)—A multi-scale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications. Meteor. Atmos. Phys., 76, 143165, https://doi.org/10.1007/s007030170027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamada, T., and G. Mellor, 1975: Simulation of Wangara atmospheric boundary layer data. J. Atmos. Sci., 32, 23092329, https://doi.org/10.1175/1520-0469(1975)032<2309:ASOTWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhong, S., and F. Chow, 2012: Meso- and fine-scale modeling over complex terrain: Parameterizations and applications. Mountain Weather Research and Forecasting: Recent Progress and Current Challenges, F. Chow, S. F. De Wekker, and B. Synder, Eds., Springer, 591–654.

    • Crossref
    • Export Citation
  • Zhou, B., and F. K. Chow, 2013: Nighttime turbulent events in a steep valley: A nested large-eddy simulation study. J. Atmos. Sci., 70, 32623276, https://doi.org/10.1175/JAS-D-13-02.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, B., J. S. Simon, and F. K. Chow, 2014: The convective boundary layer in the terra incognita. J. Atmos. Sci., 71, 25452563, https://doi.org/10.1175/JAS-D-13-0356.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, B., M. Xue, and K. Zhu, 2017: A grid-refinement-based approach for modeling the convective boundary layer in the gray zone: A pilot study. J. Atmos. Sci., 74, 34973513, https://doi.org/10.1175/JAS-D-16-0376.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 759 212 6
PDF Downloads 304 45 0