• Brammer, A., and C. D. Thorncroft, 2017: Spatial and temporal variability of the three-dimensional flow around African easterly waves. Mon. Wea. Rev., 145, 28792895, https://doi.org/10.1175/MWR-D-16-0454.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., and Coauthors, 2013: NASA’s Genesis and Rapid Intensification Processes (GRIP) field experiment. Bull. Amer. Meteor. Soc., 94, 345363, https://doi.org/10.1175/BAMS-D-11-00232.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., J. A. Sippel, and D. S. Nolan, 2012: The impact of dry midlevel air on hurricane intensity in idealized simulations with no mean flow. J. Atmos. Sci., 69, 236257, https://doi.org/10.1175/JAS-D-10-05007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carrasco, C. A., C. W. Landsea, and Y.-L. Lin, 2014: The influence of tropical cyclone size on its intensification. Wea. Forecasting, 29, 582590, https://doi.org/10.1175/WAF-D-13-00092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., and J. Molinari, 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130, 21102123, https://doi.org/10.1175/1520-0493(2002)130<2110:TEOVWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cossuth, J. H., R. D. Knabb, D. P. Brown, and R. E. Hart, 2013: Tropical cyclone formation guidance using pregenesis Dvorak climatology. Part I: Operational forecasting and predictive potential. Wea. Forecasting, 28, 100118, https://doi.org/10.1175/WAF-D-12-00073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demuth, J., M. DeMaria, and J. A. Knaff, 2006: Improvement of advanced microwave sounder unit tropical cyclone intensity and size estimation algorithms. J. Appl. Meteor. Climatol., 45, 15731581, https://doi.org/10.1175/JAM2429.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., M. T. Montgomery, and Z. Wang, 2009: Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys., 9, 55875646, https://doi.org/10.5194/acp-9-5587-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dvorak, V. F., 1984: Tropical cyclone intensity analysis using satellite data. NOAA Tech. Rep. NESDIS 11, 47 pp., http://satepsanone.nesdis.noaa.gov/pub/Publications/Tropical/Dvorak_1984.pdf.

  • Elsberry, R. L., and P. A. Harr, 2008: Tropical Cyclone Structure (TCS08) field experiment science basis, observational platforms, and strategy. Asia-Pac. J. Atmos. Sci., 44, 209231.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585604, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fang, J., and F. Zhang, 2011: Evolution of multiscale vortices in the development of Hurricane Dolly (2008). J. Atmos. Sci., 68, 103122, https://doi.org/10.1175/2010JAS3522.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on hurricane intensity and structure. Mon. Wea. Rev., 129, 22492269, https://doi.org/10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritz, C., and Z. Wang, 2013: A numerical study about the impacts of dry air on tropical cyclone formation. J. Atmos. Sci., 70, 91111, https://doi.org/10.1175/JAS-D-12-018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritz, C., and Z. Wang, 2014: Water vapor budget in a developing tropical cyclone and its implication for tropical cyclone formation. J. Atmos. Sci., 71, 43214332, https://doi.org/10.1175/JAS-D-13-0378.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritz, C., Z. Wang, S. W. Nesbitt, and T. Dunkerton, 2016: Vertical structure and contribution of different types of precipitation during Atlantic tropical cyclone formation as revealed by TRMM PR. Geophys. Res. Lett., 43, 894901, https://doi.org/10.1002/2015GL067122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, B., M. S. Peng, T. Li, and D. E. Stevens, 2012: Developing versus nondeveloping disturbances for tropical cyclone formation. Part II: Western North Pacific. Mon. Wea. Rev., 140, 10671080, https://doi.org/10.1175/2011MWR3618.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gentemann, C. L., F. J. Wentz, C. A. Mears, and D. K. Smith, 2004: In situ validation of Tropical Rainfall Measuring Mission microwave sea surface temperatures. J. Geophys. Res., 109, C04021, https://doi.org/10.1029/2003JC002092.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., M. L. Salby, and F. Sassi, 2002: The distribution and influence of convection in the tropical tropopause region. J. Geophys. Res., 107, 4080, https://doi.org/10.1029/2001JD001048.

    • Search Google Scholar
    • Export Citation
  • Hack, J. J., and W. H. Schubert, 1986: Nonlinear response of atmospheric vortices to heating by organized cumulus convection. J. Atmos. Sci., 43, 15591573, https://doi.org/10.1175/1520-0469(1986)043<1559:NROAVT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hankes, I., Z. Wang, G. Zhang, and C. L. Fritz, 2015: Merger of African easterly waves and formation of Cape Verde storms. Quart. J. Roy. Meteor. Soc., 141, 13061319, https://doi.org/10.1002/qj.2439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., M. T. Montgomery, and C. A. Davis, 2004: The role of “vortical” hot towers in the formation of Tropical Cyclone Diana. J. Atmos. Sci., 61, 12091232, https://doi.org/10.1175/1520-0469(2004)061<1209:TROVHT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, K. A., and G. M. Lackmann, 2009: Influence of environmental humidity on tropical cyclone size. Mon. Wea. Rev., 137, 32943315, https://doi.org/10.1175/2009MWR2679.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hopsch, S. B., C. D. Thorncroft, and K. R. Tyle, 2010: Analysis of African easterly wave structures and their role in influencing tropical cyclogenesis. Mon. Wea. Rev., 138, 13991419, https://doi.org/10.1175/2009MWR2760.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., W.-C. Lee, and M. M. Bell, 2009: Convective contribution to the genesis of Hurricane Ophelia (2005). Mon. Wea. Rev., 137, 27782800, https://doi.org/10.1175/2009MWR2727.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, H., C. Liu, and E. J. Zipser, 2011: A TRMM-based tropical cyclone cloud and precipitation feature database. J. Appl. Meteor. Climatol., 50, 12551274, https://doi.org/10.1175/2011JAMC2662.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kilroy, G., and R. K. Smith, 2017: The effects of initial vortex size on hurricane genesis and intensification. Quart. J. Roy. Meteor. Soc., 143, 28322845. https://doi.org/10.1002/qj.3134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kilroy, G., R. K. Smith, and M. T. Montgomery, 2017: A unified view of tropical cyclogenesis and intensification. Quart. J. Roy. Meteor. Soc., 143, 450462, https://doi.org/10.1002/qj.2934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kimball, S. K., 2006: A modeling study of hurricane landfall in a dry environment. Mon. Wea. Rev., 134, 19011918, https://doi.org/10.1175/MWR3155.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., and Coauthors, 2011: Globally Gridded Satellite observations for climate studies. Bull. Amer. Meteor. Soc., 92, 893907, https://doi.org/10.1175/2011BAMS3039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and Coauthors, 2004: The Atlantic hurricane database re-analysis project: Documentation for the 1851-1910 alterations and additions to the HURDAT database. Hurricanes and Typhoons: Past, Present and Future, R. J. Murname and K.-B. Liu, Eds., Columbia University Press, 177–221.

  • Lee, C.-S., K. K. Cheung, J. S. Hui, and R. L. Elsberry, 2008: Mesoscale features associated with tropical cyclone formations in the western North Pacific. Mon. Wea. Rev., 136, 20062022, https://doi.org/10.1175/2007MWR2267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leppert, K. D., D. J. Cecil, and W. A. Petersen, 2013: Relation between tropical easterly waves, convection, and tropical cyclogenesis: A Lagrangian perspective. Mon. Wea. Rev., 141, 26492668, https://doi.org/10.1175/MWR-D-12-00217.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, K. S., and J. C. L. Chan, 2002: Synoptic flow patterns associated with small and large tropical cyclones over the western North Pacific. Mon. Wea. Rev., 130, 21342142, https://doi.org/10.1175/1520-0493(2002)130<2134:SFPAWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merrill, R. T., 1984: A comparison of large and small tropical cyclones. Mon. Wea. Rev., 112, 14081418, https://doi.org/10.1175/1520-0493(1984)112<1408:ACOLAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., D. M. Romps, D. Vollaro, and L. Nguyen, 2012: CAPE in tropical cyclones. J. Atmos. Sci., 69, 24522463, https://doi.org/10.1175/JAS-D-11-0254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. K. Smith, 2011: Tropical cyclone formation: Theory and idealized modelling. Proc. Seventh WMO International Workshop on Tropical Cyclones, La Réunion, France, WMO, 2.1, https://www.wmo.int/pages/prog/arep/wwrp/tmr/otherfileformats/documents/2.1P.Harr.pdf.

  • Montgomery, M. T., and R. K. Smith, 2014: Paradigms for tropical cyclone intensification. Aust. Meteor. Oceanogr. J., 64, 3766, http://www.bom.gov.au/amm/docs/2014/montgomery.pdf.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., M. E. Nicholls, T. A. Cram, and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355386, https://doi.org/10.1175/JAS3604.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., Z. Wang, and T. J. Dunkerton, 2010: Coarse, intermediate and high resolution numerical simulations of the transition of a tropical wave critical layer to a tropical storm. Atmos. Chem. Phys., 10, 10 80310 827, https://doi.org/10.5194/acp-10-10803-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and Coauthors, 2012: The Pre-Depression Investigation of Cloud Systems in the Tropics (PREDICT) experiment: Scientific basis, new analysis tools and some first results. Bull. Amer. Meteor. Soc., 93, 153172, https://doi.org/10.1175/BAMS-D-11-00046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Musgrave, K. D., R. K. Taft, J. L. Vigh, B. D. McNoldy, and W. H. Schubert, 2012: Time evolution of the intensity and size of tropical cyclones. J. Adv. Model. Earth Syst., 4, M08001, https://doi.org/10.1029/2011MS000104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., O. Peters, and K. Hales, 2009: The transition to strong convection. J. Atmos. Sci., 66, 23672384, https://doi.org/10.1175/2009JAS2962.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., E. D. Rappin, and K. A. Emanuel, 2007: Tropical cyclogenesis sensitivity to environmental parameters in radiative-convective equilibrium. Quart. J. Roy. Meteor. Soc., 133, 20852017, https://doi.org/10.1002/qj.170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, M. S., B. Fu, T. Li, and D. E. Stevens, 2012: Developing versus nondeveloping disturbances for tropical cyclone formation. Part I: North Atlantic. Mon. Wea. Rev., 140, 10471066, https://doi.org/10.1175/2011MWR3617.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, O., J. D. Neelin, and S. W. Nesbitt, 2009: Mesoscale convective systems and critical clusters. J. Atmos. Sci., 66, 29132924, https://doi.org/10.1175/2008JAS2761.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 2000: Thermodynamic control of tropical rainfall. Quart. J. Roy. Meteor. Soc., 126, 889898, https://doi.org/10.1002/qj.49712656406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and C. L. Carrillo, 2011: The vorticity budget of developing Typhoon Nuri (2008). Atmos. Chem. Phys., 11, 147163, https://doi.org/10.5194/acp-11-147-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riemer, M., and M. T. Montgomery, 2011: Simple kinematic models for the environmental interaction of tropical cyclones in vertical wind shear. Atmos. Chem. Phys., 11, 93959414, https://doi.org/10.5194/acp-11-9395-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rousseeuw, P. J., 1987: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math., 20, 5365, https://doi.org/10.1016/0377-0427(87)90125-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., W. H. Schubert, B. D. McNoldy, and J. P. Kossin, 2006: Rapid filamentation zones in intense tropical cyclones. J. Atmos. Sci., 63, 325340, https://doi.org/10.1175/JAS3595.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruf, C., and Coauthors, 2016: New ocean winds satellite mission to probe hurricanes and tropical convection. Bull. Amer. Meteor. Soc., 97, 385395, https://doi.org/10.1175/BAMS-D-14-00218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., and J. J. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39, 16871697, https://doi.org/10.1175/1520-0469(1982)039<1687:ISATCD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A., S. Uppala, D. Dee, and S. Kobayashi, 2006: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 25–35, https://www.ecmwf.int/sites/default/files/elibrary/2006/14615-newsletter-no110-winter-200607.pdf.

  • Smith, R. K., and M. T. Montgomery, 2016: The efficiency of diabatic heating and tropical cyclone intensification. Quart. J. Roy. Meteor. Soc., 142, 20812086, https://doi.org/10.1002/qj.2804.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stechmann, S., and J. D. Neelin, 2011: A stochastic model for the transition to strong convection. J. Atmos. Sci., 68, 29552970, https://doi.org/10.1175/JAS-D-11-028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tory, K., and W. M. Frank, 2010: Tropical cyclone formation. Global Perspectives on Tropical Cyclones, 2nd ed. J. Chan and J. D. Kepert, Eds., World Scientific, 55–92.

    • Crossref
    • Export Citation
  • Tory, K., S. S. Chand, R. A. Dare, and J. L. McBride, 2013: The development and assessment of a model-, grid-, and basin-independent tropical cyclone detection scheme. J. Climate, 26, 54935507, https://doi.org/10.1175/JCLI-D-12-00510.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsuji, H., H. Itoh, and K. Nakajima, 2016: Mechanism governing the size change of tropical cyclone-like vortices. J. Meteor. Soc. Japan, 94, 219236, https://doi.org/10.2151/jmsj.2016-012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Sang, N., R. K. Smith, and M. T. Montgomery, 2008: Tropical-cyclone intensification and predictability in three dimensions. Quart. J. Roy. Meteor. Soc., 134, 563582.1, https://doi.org/10.1002/qj.235.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velden, C. S., and Coauthors, 2006: The Dvorak tropical cyclone intensity estimation technique: A satellite-based method that has endured for over 30 years. Bull. Amer. Meteor. Soc., 87, 11951210, https://doi.org/10.1175/BAMS-87-9-1195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66, 12501273, https://doi.org/10.1175/2008JAS2737.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., 2012: Thermodynamic aspects of tropical cyclone formation. J. Atmos. Sci., 69, 24332451, https://doi.org/10.1175/JAS-D-11-0298.1.

  • Wang, Z., 2014: Role of cumulus congestus in tropical cyclone formation in a high-resolution numerical model simulation. J. Atmos. Sci., 71, 16811700, https://doi.org/10.1175/JAS-D-13-0257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., and I. Hankes, 2014: Characteristics of tropical easterly wave pouches during tropical cyclone formation. Mon. Wea. Rev., 142, 626633, https://doi.org/10.1175/MWR-D-13-00267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., and I. Hankes, 2016: Moisture and precipitation evolution during tropical cyclone formation as revealed by the SSMI/SSMIS retrievals. J. Atmos. Sci., 73, 27732781, https://doi.org/10.1175/JAS-D-15-0306.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., M. T. Montgomery, and T. J. Dunkerton, 2009: A dynamically-based method for forecasting tropical cyclogenesis location in the Atlantic sector using global model products. Geophys. Res. Lett., 36, L03801, https://doi.org/10.1029/2008GL035586.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., M. T. Montgomery, and T. J. Dunkerton, 2010a: Genesis of pre-Hurricane Felix (2007). Part I: The role of the wave critical layer. J. Atmos. Sci., 67, 17111729, https://doi.org/10.1175/2009JAS3420.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., M. T. Montgomery, and T. J. Dunkerton, 2010b: Genesis of pre-Hurricane Felix (2007). Part II: Warm core formation, precipitation evolution and predictability. J. Atmos. Sci., 67, 17301744, https://doi.org/10.1175/2010JAS3435.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., M. T. Montgomery, and C. Fritz, 2012: A first look at the structure of the wave pouch during the 2009 PREDICT–GRIP dry runs over the Atlantic. Mon. Wea. Rev., 140, 11441163, https://doi.org/10.1175/MWR-D-10-05063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., 2013: SSM/I version-7 calibration report. RSS Tech. Rep. 011012, 46 pp., http://images.remss.com/papers/rsstech/2012_011012_Wentz_Version-7_SSMI_Calibration.pdf.

  • Xu, J., and Y. Wang, 2010: Sensitivity of the simulated tropical cyclone inner-core size to the initial vortex size. Mon. Wea. Rev., 138, 41354157, https://doi.org/10.1175/2010MWR3335.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zawislak, J., and E. J. Zipser, 2014: A multisatellite investigation of the convective properties of developing and nondeveloping tropical disturbances. Mon. Wea. Rev., 142, 46244645, https://doi.org/10.1175/MWR-D-14-00028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zehr, R. M., 1992: Tropical cyclogenesis in the western North Pacific. NOAA Tech. Rep. NESDIS 61, 181 pp., https://repository.library.noaa.gov/view/noaa/13116.

  • Zipser, E. J., 2003: Some views on “hot towers” after 50 years of tropical field programs and two years of TRMM data. Cloud Systems, Hurricanes, and the Tropical Rainfall Measuring Mission (TRMM), Meteor. Monogr., No. 51, Amer. Meteor. Soc., 49–58.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 9 9 9
PDF Downloads 9 9 9

What is the Key Feature of Convection Leading up to Tropical Cyclone Formation?

View More View Less
  • 1 Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois
Restricted access

Abstract

Infrared brightness temperature data are used to investigate convective evolution during tropical cyclone (TC) formation in a quasi-Lagrangian framework. More than 150 named Atlantic storms during 1989–2010 were examined. It is found that both convective intensity and convective frequency increase with time in the inner pouch region but change little, or even weaken slightly, in the outer pouch region. Convection thus appears to concentrate toward the circulation center as genesis is approached. However, large variability is found from storm to storm in convective intensity, area, and duration, and the convective evolution of individual storms does not resemble the composite mean. Further analysis suggests that the composite mean or the median represents the probability of occurrence of convection instead of a recurrent pattern. Three distinct spatial patterns of convection are identified using cluster analysis. Substantial differences in convection intensity and area are found among the clusters and can be attributed to the impacts of environmental conditions. These differences suggest that convection intensity or area is not a key feature of convection for tropical cyclogenesis. In particular, a small and weak convective system is not necessarily associated with a weak vortex. A simple proxy of the radial gradient of convection is found to be similar among the clusters. Furthermore, convection is most effective in strengthening the TC protovortex when its maximum occurs near the pouch center. These findings suggest that organized convection near the pouch center is a key feature of convection for tropical cyclogenesis and that emphasizing convective intensity or frequency without considering the spatial pattern may be misleading.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-17-0131.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhuo Wang, zhuowang@illinois.edu

Abstract

Infrared brightness temperature data are used to investigate convective evolution during tropical cyclone (TC) formation in a quasi-Lagrangian framework. More than 150 named Atlantic storms during 1989–2010 were examined. It is found that both convective intensity and convective frequency increase with time in the inner pouch region but change little, or even weaken slightly, in the outer pouch region. Convection thus appears to concentrate toward the circulation center as genesis is approached. However, large variability is found from storm to storm in convective intensity, area, and duration, and the convective evolution of individual storms does not resemble the composite mean. Further analysis suggests that the composite mean or the median represents the probability of occurrence of convection instead of a recurrent pattern. Three distinct spatial patterns of convection are identified using cluster analysis. Substantial differences in convection intensity and area are found among the clusters and can be attributed to the impacts of environmental conditions. These differences suggest that convection intensity or area is not a key feature of convection for tropical cyclogenesis. In particular, a small and weak convective system is not necessarily associated with a weak vortex. A simple proxy of the radial gradient of convection is found to be similar among the clusters. Furthermore, convection is most effective in strengthening the TC protovortex when its maximum occurs near the pouch center. These findings suggest that organized convection near the pouch center is a key feature of convection for tropical cyclogenesis and that emphasizing convective intensity or frequency without considering the spatial pattern may be misleading.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-17-0131.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhuo Wang, zhuowang@illinois.edu

Supplementary Materials

    • Supplemental Materials (DOCX 5.74 MB)
Save