Heating and Moistening of the MJO during DYNAMO in ECMWF Reforecasts

Ji-Eun Kim Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, and Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, Seattle, Washington

Search for other papers by Ji-Eun Kim in
Current site
Google Scholar
PubMed
Close
,
Chidong Zhang NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington

Search for other papers by Chidong Zhang in
Current site
Google Scholar
PubMed
Close
,
George N. Kiladis NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by George N. Kiladis in
Current site
Google Scholar
PubMed
Close
, and
Peter Bechtold European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Search for other papers by Peter Bechtold in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Reforecasts produced by the ECMWF Integrated Forecast System (IFS) were used to study heating and moistening processes associated with three MJO events over the equatorial Indian Ocean during the Dynamics of the Madden–Julian Oscillation (DYNAMO) field campaign. Variables produced by and derived from the IFS reforecast (IFS-RF) agree reasonably well with observations over the DYNAMO sounding arrays, and they vary smoothly from the western to eastern equatorial Indian Ocean. This lends confidence toward using IFS-RF as a surrogate of observations over the equatorial Indian Ocean outside the DYNAMO arrays. The apparent heat source Q 1 and apparent moisture sink Q 2 produced by IFS are primarily generated by parameterized cumulus convection, followed by microphysics and radiation. The vertical growth of positive Q 1 and Q 2 associated with the progression of MJO convection can be gradual, stepwise, or rapid depending on the event and its location over the broader equatorial Indian Ocean. The time for convective heating and drying to progress from shallow (800 hPa) to deep (400 hPa) can be <1 to 6 days. This growth time of heating and drying is usually short for convective processes alone but becomes longer when additional microphysical processes, such as evaporative moistening below convective and stratiform clouds, are in play. Three ratios are calculated to measure the possible role of radiative feedback in the MJO events: amplitudes of radiative versus convective heating rates, changes in radiative versus convective heating rates, and diabatic (with and without the radiative component) versus adiabatic heating rates. None of them unambiguously distinguishes the MJO from non-MJO convective events.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ji-Eun Kim, jkjkjk@uw.edu

This article is included in the DYNAMO/CINDY/AMIE/LASP: Processes, Dynamics, and Prediction of MJO Initiation special collection.

Abstract

Reforecasts produced by the ECMWF Integrated Forecast System (IFS) were used to study heating and moistening processes associated with three MJO events over the equatorial Indian Ocean during the Dynamics of the Madden–Julian Oscillation (DYNAMO) field campaign. Variables produced by and derived from the IFS reforecast (IFS-RF) agree reasonably well with observations over the DYNAMO sounding arrays, and they vary smoothly from the western to eastern equatorial Indian Ocean. This lends confidence toward using IFS-RF as a surrogate of observations over the equatorial Indian Ocean outside the DYNAMO arrays. The apparent heat source Q 1 and apparent moisture sink Q 2 produced by IFS are primarily generated by parameterized cumulus convection, followed by microphysics and radiation. The vertical growth of positive Q 1 and Q 2 associated with the progression of MJO convection can be gradual, stepwise, or rapid depending on the event and its location over the broader equatorial Indian Ocean. The time for convective heating and drying to progress from shallow (800 hPa) to deep (400 hPa) can be <1 to 6 days. This growth time of heating and drying is usually short for convective processes alone but becomes longer when additional microphysical processes, such as evaporative moistening below convective and stratiform clouds, are in play. Three ratios are calculated to measure the possible role of radiative feedback in the MJO events: amplitudes of radiative versus convective heating rates, changes in radiative versus convective heating rates, and diabatic (with and without the radiative component) versus adiabatic heating rates. None of them unambiguously distinguishes the MJO from non-MJO convective events.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ji-Eun Kim, jkjkjk@uw.edu

This article is included in the DYNAMO/CINDY/AMIE/LASP: Processes, Dynamics, and Prediction of MJO Initiation special collection.

Save
  • Adames, Á. F., and J. M. Wallace, 2015: Three-dimensional structure and evolution of the moisture field in the MJO. J. Atmos. Sci., 72, 37333754, https://doi.org/10.1175/JAS-D-15-0003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adames, Á. F., and D. Kim, 2016: The MJO as a dispersive, convectively coupled moisture wave: Theory and observations. J. Atmos. Sci., 73, 913941, https://doi.org/10.1175/JAS-D-15-0170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bechtold, P., M. Köhler, T. Jung, F. Doblas‐Reyes, M. Leutbecher, M. J. Rodwell, F. Vitart, and G. Balsamo, 2008: Advances in predicting atmospheric variability with the ECMWF model: From synoptic to decadal time-scales. Quart. J. Roy. Meteor. Soc., 134, 13371351, https://doi.org/10.1002/qj.289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bechtold, P., N. Semane, P. Lopez, J.-P. Chaboureau, A. Beljaars, and N. Bormann, 2014: Representing equilibrium and nonequilibrium convection in large-scale models. J. Atmos. Sci., 71, 734753, https://doi.org/10.1175/JAS-D-13-0163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., and D. Randall, 2007: Observed characteristics of the MJO relative to maximum rainfall. J. Atmos. Sci., 64, 23322354, https://doi.org/10.1175/JAS3968.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. E. Peters, and L. E. Back, 2004: Relationships between water vapor path and precipitation over the tropical oceans. J. Climate, 17, 15171528, https://doi.org/10.1175/1520-0442(2004)017<1517:RBWVPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, G., and G. J. Zhang, 2017: Role of vertical structure of convective heating in MJO simulation in NCAR CAM5.3. J. Climate, 30, 74237439, https://doi.org/10.1175/JCLI-D-16-0913.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., and Coauthors, 2015: A study of CINDY/DYNAMO MJO suppressed phase. J. Atmos. Sci., 72, 37553779, https://doi.org/10.1175/JAS-D-13-0348.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chikira, M., 2014: Eastward-propagating intraseasonal oscillation represented by Chikira–Sugiyama cumulus parameterization. Part II: Understanding moisture variation under weak temperature gradient balance. J. Atmos. Sci., 71, 615639, https://doi.org/10.1175/JAS-D-13-038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., and Coauthors, 2014: Quality-controlled upper-air sounding dataset for DYNAMO/CINDY/AMIE: Development and corrections. J. Atmos. Oceanic Technol., 31, 741764, https://doi.org/10.1175/JTECH-D-13-00165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., R. H. Johnson, X. Jiang, Y. Zhang, and S. Xie, 2017: Relationships between radiation, clouds, and convection during DYNAMO. J. Geophys. Res. Atmos., 122, 25292548, https://doi.org/10.1002/2016JD025965.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., and Y. Chen, 2015: Cloud-radiative driving of the Madden-Julian oscillation as seen by the A-Train. J. Geophys. Res. Atmos., 120, 53445356, https://doi.org/10.1002/2015JD023278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., A. A. Wing, and E. M. Vincent, 2014: Radiative-convective instability. J. Adv. Model. Earth Syst., 6, 7590, https://doi.org/10.1002/2013MS000270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Esbensen, S., J.-T. Wang, and E. I. Tollerud, 1988: A composite life cycle of nonsquall mesoscale convective systems over the tropical ocean. Part II: Heat and moisture budgets. J. Atmos. Sci., 45, 537548, https://doi.org/10.1175/1520-0469(1988)045<0537:ACLCON>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, Z., S. A. McFarlane, C. Schumacher, S. Ellis, and N. Bharadwaj, 2014: Constructing a merged cloud–precipitation radar dataset for tropical clouds during the DYNAMO/AMIE experiment on Addu Atoll. J. Atmos. Oceanic Technol., 31, 10211042, https://doi.org/10.1175/JTECH-D-13-00132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forbes, R., and A. M. Tompkins, 2011: An improved representation of cloud and precipitation. ECMWF Newsletter, No. 129, ECMWF, Reading, United Kingdom, 13–18.

  • Forbes, R., A. M. Tompkins, and A. Untch, 2011: A new prognostic bulk microphysics scheme for the IFS. ECMWF Tech. Memo. 649, 30 pp.

  • Fu, X., W. Wang, J.-Y. Lee, B. Wang, K. Kikuchi, J. Xu, J. Li, and S. Weaver, 2015: Distinctive roles of air–sea coupling on different MJO events: A new perspective revealed from the DYNAMO/CINDY field campaign. Mon. Wea. Rev., 143, 794812, https://doi.org/10.1175/MWR-D-14-00221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gottschalck, J., P. E. Roundy, C. J. Schreck III, A. Vintzileos, and C. Zhang, 2013: Large-scale atmospheric and oceanic conditions during the 2011–12 DYNAMO field campaign. Mon. Wea. Rev., 141, 41734196, https://doi.org/10.1175/MWR-D-13-00022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagos, S., Z. Feng, C. D. Burleyson, K.-S. S. Lim, C. N. Long, D. Wu, and G. Thompson, 2014a: Evaluation of convection-permitting model simulations of cloud populations associated with the Madden-Julian oscillation using data collected during the AMIE/DYNAMO field campaign. J. Geophys. Res. Atmos., 119, 12 05212 068, https://doi.org/10.1002/2014JD022143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagos, S., Z. Feng, K. Landu, and C. N. Long, 2014b: Advection, moistening, and shallow-to-deep convection transitions during the initiation and propagation of Madden-Julian oscillation. J. Adv. Model. Earth Syst., 6, 938949, https://doi.org/10.1002/2014MS000335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hannah, W. M., and E. D. Maloney, 2014: The moist static energy budget in NCAR CAM5 hindcasts during DYNAMO. J. Adv. Model. Earth Syst., 6, 420440, https://doi.org/10.1002/2013MS000272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hannah, W. M., B. E. Mapes, and G. S. Elsaesser, 2016: A Lagrangian view of moisture dynamics during DYNAMO. J. Atmos. Sci., 73, 19671985, https://doi.org/10.1175/JAS-D-15-0243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, M. M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 3650, https://doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, D. T. Bolvin, G. Gu, E. J. Nelkin, K. P. Bowman, E. F. Stocker, and D. B. Wolff, 2007: The TRMM Multisatellite Precipitation Analysis: Quasi-global, multiyear, combined-sensor precipitation estimates at fine scale. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janiga, M. A., and C. Zhang, 2016: MJO moisture budget during DYNAMO in a cloud-resolving model. J. Atmos. Sci., 73, 22572278, https://doi.org/10.1175/JAS-D-14-0379.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., 1984: Partitioning tropical heat and moisture budgets into cumulus and mesoscale components: Implications for cumulus parameterization. Mon. Wea. Rev., 112, 15901601, https://doi.org/10.1175/1520-0493(1984)112<1590:PTHAMB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and P. E. Ciesielski, 2013: Structure and properties of Madden–Julian oscillations deduced from DYNAMO sounding arrays. J. Atmos. Sci., 70, 31573179, https://doi.org/10.1175/JAS-D-13-065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 23972418, https://doi.org/10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., P. E. Ciesielski, J. H. Ruppert, and M. Katsumata, 2015: Sounding-based thermodynamic budgets for DYNAMO. J. Atmos. Sci., 72, 598622, https://doi.org/10.1175/JAS-D-14-0202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katsumata, M., P. E. Ciesielski, and R. H. Johnson, 2011: Evaluation of budget analysis during MISMO. J. Appl. Meteor. Climatol., 50, 241254, https://doi.org/10.1175/2010JAMC2515.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerns, B. W., and S. S. Chen, 2014: Equatorial dry air intrusion and related synoptic variability in MJO initiation during DYNAMO. Mon. Wea. Rev., 142, 13261343, https://doi.org/10.1175/MWR-D-13-00159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., G. N. Kiladis, J. Dias, and T. Nasuno, 2018: Convectively coupled equatorial waves within the MJO during CINDY/DYNAMO: Slow Kelvin waves as building blocks. Climate Dyn., https://doi.org/10.1007/s00382-017-3869-5, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., M. Ahn, I. Kang, and A. D. Del Genio, 2015: Role of longwave cloud–radiation feedback in the simulation of the Madden–Julian oscillation. J. Climate, 28, 69796994, https://doi.org/10.1175/JCLI-D-14-00767.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J.-E., and Coauthors, 2016: Ubiquitous influence of waves on tropical high cirrus clouds. Geophys. Res. Lett., 43, 58955901, https://doi.org/10.1002/2016GL069293.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klingaman, N. P., and Coauthors, 2015: Vertical structure and diabatic processes of the Madden–Julian oscillation: Linking hindcast fidelity to simulated diabatic heating and moistening. J. Geophys. Res. Atmos., 120, 46904717, https://doi.org/10.1002/2014JD022374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kubota, H., K. Yoneyama, J. I. Hamada, P. Wu, A. Sudaryanto, and I. B. Wahyono, 2015: Role of Maritime Continent convection during the preconditioning stage of the Madden-Julian oscillation observed in CINDY2011/DYNAMO. J. Meteor. Soc. Japan, 93, 101114, https://doi.org/10.2151/jmsj.2015-050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lappen, C.-L., and C. Schumacher, 2014: The role of tilted heating in the evolution of the MJO. J. Geophys. Res. Atmos., 119, 29662989, https://doi.org/10.1002/2013JD020638.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, M.-I., I.-S. Kang, J.-K. Kim, and B. E. Mapes, 2001: Influence of cloud-radiation interaction on simulating tropical intraseasonal oscillation with an atmosphere general circulation model. J. Geophys. Res., 106, 14 29114 233, https://doi.org/10.1029/2001JD900143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., C. Zhao, P. C. Hsu, and T. Nasuno, 2015: MJO initiation processes over the tropical Indian Ocean during DYNAMO/CINDY2011. J. Climate, 28, 21212135, https://doi.org/10.1175/JCLI-D-14-00328.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., W. Tao, A. P. Khain, J. Simpson, and D. E. Johnson, 2009: Sensitivity of a cloud-resolving model to bulk and explicit bin microphysical schemes. Part I: Comparisons. J. Atmos. Sci., 66, 321, https://doi.org/10.1175/2008JAS2646.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., and B. E. Mapes, 2004: Radiation budget of the tropical intraseasonal oscillation. J. Atmos. Sci., 61, 20502062, https://doi.org/10.1175/1520-0469(2004)061<2050:RBOTTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ling, J., and C. Zhang, 2011: Structural evolution in heating profiles of the MJO in global reanalyses and TRMM retrievals. J. Climate, 24, 825842, https://doi.org/10.1175/2010JCLI3826.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ling, J., P. Bauer, P. Bechtold, A. Beljaars, R. Forbes, F. Vitart, M. Ulate, and C. Zhang, 2014: Global versus local MJO forecast skill of the ECMWF model during DYNAMO. Mon. Wea. Rev., 142, 22282247, https://doi.org/10.1175/MWR-D-13-00292.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50-day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50-day period. J. Atmos. Sci., 29, 11091123, https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., and J. T. Bacmeister, 2012: Diagnosis of tropical biases and the MJO from patterns in the MERRA analysis tendency fields. J. Climate, 25, 62026214, https://doi.org/10.1175/JCLI-D-11-00424.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyakawa, T., andCoauthors, 2014: Madden–Julian oscillation prediction skill of a new-generation global model demonstrated using a supercomputer. Nat. Commun., 5, 3769, https://doi.org/10.1038/ncomms4769.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., D. E. Waliser, M. J. Miller, M. E. Shapiro, G. Asrar, and J. Caughey, 2012: Multiscale convective organization and the YOTC virtual global field campaign. Bull. Amer. Meteor. Soc., 93, 11711187, https://doi.org/10.1175/BAMS-D-11-00233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagarajan, B., and A. R. Aiyyer, 2004: Performance of the ECMWF operational analyses over the tropical Indian Ocean. Mon. Wea. Rev., 132, 22752282, https://doi.org/10.1175/1520-0493(2004)132<2275:POTEOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nasuno, T., T. Li, and K. Kikuchi, 2015: Moistening processes before the convective initiation of Madden–Julian oscillation events during the CINDY2011/DYNAMO period. Mon. Wea. Rev., 143, 622643, https://doi.org/10.1175/MWR-D-14-00132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 312, https://doi.org/10.1175/1520-0493(1987)115<0003:MTCBOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oh, J. H., X. Jiang, D. E. Waliser, M. W. Moncrieff, R. H. Johnson, and P. Ciesielski, 2015: A momentum budget analysis of westerly wind events associated with the Madden–Julian oscillation during DYNAMO. J. Atmos. Sci., 72, 37803799, https://doi.org/10.1175/JAS-D-15-0044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pilon, R., C. Zhang, and J. Dudhia, 2016: Roles of deep and shallow convection and microphysics in the MJO simulated by the Model for Prediction Across Scales. J. Geophys. Res. Atmos., 121, 10 57510 600, https://doi.org/10.1002/2015JD024697.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, S. W., 2016: Updraft buoyancy within and moistening by cumulonimbi prior to MJO convective onset in a regional model. J. Atmos. Sci., 73, 29132934, https://doi.org/10.1175/JAS-D-15-0326.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, S. W., 2017: Successive MJO propagation in MERRA-2 reanalysis. Geophys. Res. Lett., 44, 5178–5186, https://doi.org/10.1002/2017GL073399.

  • Powell, S. W., and R. A. Houze Jr., 2013: The cloud population and onset of the Madden-Julian oscillation over the Indian Ocean during DYNAMO-AMIE. J. Geophys. Res. Atmos., 118, 11 97911 995, https://doi.org/10.1002/2013JD020421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 2001: A new model of the Madden–Julian oscillation. J. Atmos. Sci., 58, 28072819, https://doi.org/10.1175/1520-0469(2001)058<2807:ANMOTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., S. L. Sessions, A. H. Sobel, and Z. Fuchs, 2009: The mechanics of gross moist stability. J. Adv. Model. Earth Syst., 1 (3), https://doi.org/10.3894/JAMES.2009.1.9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, https://doi.org/10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., and S. P. de Szoeke, 2015: Cloud-resolving large-eddy simulation of tropical convective development and surface fluxes. Mon. Wea. Rev., 143, 24412458, https://doi.org/10.1175/MWR-D-14-00247.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A., and E. D. Maloney, 2012: An idealized semi-empirical framework for modeling the Madden–Julian oscillation. J. Atmos. Sci., 69, 16911705, https://doi.org/10.1175/JAS-D-11-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A., S. Wang, and D. Kim, 2014: Moist static energy budget of the MJO during DYNAMO. J. Atmos. Sci., 71, 42764291, https://doi.org/10.1175/JAS-D-14-0052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takemi, T., 2015: Relationship between cumulus activity and environmental moisture during the CINDY2011/DYNAMO field experiment as revealed from convection-resolving simulations. J. Meteor. Soc. Japan, 93, 4158, https://doi.org/10.2151/jmsj.2015-035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., D. Johnson, C.-L. Shie, and J. Simpson, 2004: The atmospheric energy budget and large-scale precipitation efficiency of convective systems during TOGA COARE, GATE, SCSMEX, and ARM: Cloud-resolving model simulations. J. Atmos. Sci., 61, 24052423, https://doi.org/10.1175/1520-0469(2004)061<2405:TAEBAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1993: Representation of clouds in large-scale models. Mon. Wea. Rev., 121, 30403061, https://doi.org/10.1175/1520-0493(1993)121<3040:ROCILS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., K. Gierens, and G. Rädel, 2007: Ice supersaturation in the ECMWF integrated forecast system. Quart. J. Roy. Meteor. Soc., 133, 5363, https://doi.org/10.1002/qj.14.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tseng, K. C., C. H. Sui, and T. Li, 2015: Moistening processes for Madden–Julian oscillations during DYNAMO/CINDY. J. Climate, 28, 30413057, https://doi.org/10.1175/JCLI-D-14-00416.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Virts, K. S., and J. M. Wallace, 2014: Observations of temperature, wind, cirrus, and trace gases in the tropical tropopause transition layer during the MJO. J. Atmos. Sci., 71, 11431157, https://doi.org/10.1175/JAS-D-13-0178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and Coauthors, 2012: The “Year” of Tropical Convection (May 2008–April 2010): Climate variability and weather highlights. Bull. Amer. Meteor. Soc., 93, 11891218, https://doi.org/10.1175/2011BAMS3095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., A. H. Sobel, A. Fridland, Z. Feng, J. M. Comstock, P. Minnis, and M. L. Nordeen, 2015: Simulations of cloud-radiation interaction using large-scale forcing derived from the CINDY/DYNAMO northern sounding array. J. Adv. Model. Earth Syst., 7, 14721498, https://doi.org/10.1002/2015MS000461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., A. H. Sobel, and J. Nie, 2016: Modeling the MJO in a cloud-resolving model with parameterized large-scale dynamics: Vertical structure, radiation, and horizontal advection of dry air. J. Adv. Model. Earth Syst., 8, 121139, https://doi.org/10.1002/2015MS000529.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, R. B. Lee III, G. L. Smith, and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth Observing System experiment. Bull. Amer. Meteor. Soc., 77, 853868, https://doi.org/10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, W., and S. A. Rutledge, 2015: Morphology, intensity, and rainfall production of MJO convection: Observations from DYNAMO shipborne radar and TRMM. J. Atmos. Sci., 72, 623640, https://doi.org/10.1175/JAS-D-14-0130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, W., and S. A. Rutledge, 2016: Time scales of shallow-to-deep convective transition associated with the onset of Madden-Julian oscillations. Geophys. Res. Lett., 43, 28802888, https://doi.org/10.1002/2016GL068269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, https://doi.org/10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Q., Q. Fu, and Y. Hu, 2010: Radiative impacts of clouds in the tropical tropopause layer. J. Geophys. Res., 115, D00H12, https://doi.org/10.1029/2009JD012393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yokoi, S., and A. H. Sobel, 2015: Seasonal march and intraseasonal variability of the moist static energy budget over the eastern Maritime Continent during CINDY2001/DYNAMO. J. Meteor. Soc. Japan, 93, 81100, https://doi.org/10.2151/jmsj.2015-041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoneyama, K., C. Zhang, and C. N. Long, 2013: Tracking pulses of the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., 94, 18711891, https://doi.org/10.1175/BAMS-D-12-00157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., C. Chou, and J. D. Neelin, 1998: Estimating the gross moist stability of the tropical atmosphere. J. Atmos. Sci., 55, 13541372, https://doi.org/10.1175/1520-0469(1998)055<1354:ETGMSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zermeño-Díaz, D. M., C. Zhang, P. Kollias, and H. Kalesse, 2015: The role of shallow cloud moistening in MJO and non-MJO convective events over the ARM Manus site. J. Atmos. Sci., 72, 47974820, https://doi.org/10.1175/JAS-D-14-0322.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., and J. Ling, 2012: Potential vorticity of the Madden–Julian oscillation. J. Atmos. Sci., 69, 6578, https://doi.org/10.1175/JAS-D-11-081.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4482 3750 153
PDF Downloads 260 58 8