Ultraclean Layers and Optically Thin Clouds in the Stratocumulus-to-Cumulus Transition. Part I: Observations

Robert Wood Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Robert Wood in
Current site
Google Scholar
PubMed
Close
,
Kuan-Ting O Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Kuan-Ting O in
Current site
Google Scholar
PubMed
Close
,
Christopher S. Bretherton Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Christopher S. Bretherton in
Current site
Google Scholar
PubMed
Close
,
Johannes Mohrmann Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Johannes Mohrmann in
Current site
Google Scholar
PubMed
Close
,
Bruce. A. Albrecht Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Bruce. A. Albrecht in
Current site
Google Scholar
PubMed
Close
,
Paquita Zuidema Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Paquita Zuidema in
Current site
Google Scholar
PubMed
Close
,
Virendra Ghate Argonne National Laboratory, Lemont, Illinois

Search for other papers by Virendra Ghate in
Current site
Google Scholar
PubMed
Close
,
Chris Schwartz Argonne National Laboratory, Lemont, Illinois

Search for other papers by Chris Schwartz in
Current site
Google Scholar
PubMed
Close
,
Ed Eloranta University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Ed Eloranta in
Current site
Google Scholar
PubMed
Close
,
Susanne Glienke Michigan Technological University, Houghton, Michigan

Search for other papers by Susanne Glienke in
Current site
Google Scholar
PubMed
Close
,
Raymond A. Shaw Michigan Technological University, Houghton, Michigan

Search for other papers by Raymond A. Shaw in
Current site
Google Scholar
PubMed
Close
,
Jacob Fugal Max Planck Institute for Chemistry, Mainz, Germany

Search for other papers by Jacob Fugal in
Current site
Google Scholar
PubMed
Close
, and
Patrick Minnis NASA Langley Research Center, Hampton, Virginia

Search for other papers by Patrick Minnis in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A common feature of the stratocumulus-to-cumulus transition (SCT) is the presence of layers in which the concentration of particles larger than 0.1 μm is below 10 cm−3. These ultraclean layers (UCLs) are explored using aircraft observations from 14 flights of the NSF–NCAR Gulfstream V (G-V) aircraft between California and Hawaii. UCLs are commonly located in the upper part of decoupled boundary layers, with coverage increasing from less than 5% within 500 km of the California coast to ~30%–60% west of 130°W. Most clouds in UCLs are thin, horizontally extensive layers containing drops with median volume radii ranging from 15 to 30 μm. Many UCL clouds are optically thin and do not fully attenuate the G-V lidar and yet are frequently detected with a 94-GHz radar with a sensitivity of around −30 dBZ. Satellite data indicate that UCL clouds have visible reflectances of ~0.1–0.2 and are often quasi laminar, giving them a veil-like appearance. These optically thin veil clouds exist for 1–3 h or more, are associated with mesoscale cumulus clusters, and likely grow by spreading under strong inversions. Active updrafts in cumulus (Cu) clouds have droplet concentrations of ~25–50 cm−3. Collision–coalescence in the Cu and later sedimentation in the thinner UCL clouds are likely the key processes that remove droplets in UCL clouds. UCLs are relatively quiescent, and a lack of mixing with dry air above and below the cloud may help to explain their longevity. The very low and highly variable droplet concentrations in UCL clouds, together with their low geometrical and optical thickness, make these clouds particularly challenging to represent in large-scale models.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Robert Wood, robwood2@uw.edu

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-17-0218.1

Abstract

A common feature of the stratocumulus-to-cumulus transition (SCT) is the presence of layers in which the concentration of particles larger than 0.1 μm is below 10 cm−3. These ultraclean layers (UCLs) are explored using aircraft observations from 14 flights of the NSF–NCAR Gulfstream V (G-V) aircraft between California and Hawaii. UCLs are commonly located in the upper part of decoupled boundary layers, with coverage increasing from less than 5% within 500 km of the California coast to ~30%–60% west of 130°W. Most clouds in UCLs are thin, horizontally extensive layers containing drops with median volume radii ranging from 15 to 30 μm. Many UCL clouds are optically thin and do not fully attenuate the G-V lidar and yet are frequently detected with a 94-GHz radar with a sensitivity of around −30 dBZ. Satellite data indicate that UCL clouds have visible reflectances of ~0.1–0.2 and are often quasi laminar, giving them a veil-like appearance. These optically thin veil clouds exist for 1–3 h or more, are associated with mesoscale cumulus clusters, and likely grow by spreading under strong inversions. Active updrafts in cumulus (Cu) clouds have droplet concentrations of ~25–50 cm−3. Collision–coalescence in the Cu and later sedimentation in the thinner UCL clouds are likely the key processes that remove droplets in UCL clouds. UCLs are relatively quiescent, and a lack of mixing with dry air above and below the cloud may help to explain their longevity. The very low and highly variable droplet concentrations in UCL clouds, together with their low geometrical and optical thickness, make these clouds particularly challenging to represent in large-scale models.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Robert Wood, robwood2@uw.edu

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-17-0218.1

Save
  • Ackerman, A. S., O. B. Toon, D. E. Stevens, and J. A. Coakley Jr. 2003: Enhancement of cloud cover and suppression of nocturnal drizzle in stratocumulus polluted by haze. Geophys. Res. Lett., 30, 1381, https://doi.org/10.1029/2002GL016634.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Augstein, E., H. Riehl, F. Ostapoff, and V. Wagner, 1973: Mass and energy transports in an undisturbed Atlantic trade-wind flow. Mon. Wea. Rev., 101, 101111, https://doi.org/10.1175/1520-0493(1973)101<0101:MAETIA>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berner, A. H., C. S. Bretherton, R. Wood, and A. Muhlbauer, 2013: Marine boundary layer cloud regimes and POC formation in a CRM coupled to a bulk aerosol scheme. Atmos. Chem. Phys., 13, 12 54912 572, https://doi.org/10.5194/acp-13-12549-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., and Coauthors, 2014: Origins of the solar radiation biases over the Southern Ocean in CFMIP2 models. J. Climate, 27, 4156, https://doi.org/10.1175/JCLI-D-13-00169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and P. Smolarkiewicz, 1989: Gravity waves, compensating subsidence and detrainment around cumulus clouds. J. Atmos. Sci., 46, 740759, https://doi.org/10.1175/1520-0469(1989)046<0740:GWCSAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and R. Pincus, 1995: Cloudiness and marine boundary layer dynamics in the ASTEX Lagrangian experiments. Part I: Synoptic setting and vertical structure. J. Atmos. Sci., 52, 27072723, https://doi.org/10.1175/1520-0469(1995)052<2707:CAMBLD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and M. C. Wyant, 1997: Moisture transport, lower-tropospheric stability, and decoupling of cloud-topped boundary layers. J. Atmos. Sci., 54, 148167, https://doi.org/10.1175/1520-0469(1997)054<0148:MTLTSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and P. N. Blossey, 2017: Understanding mesoscale aggregation of shallow cumulus convection using large-eddy simulation. J. Adv. Model. Earth Syst., 9, 27982821, https://doi.org/10.1002/2017MS000981.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., P. Austin, and S. T. Siems, 1995: Cloudiness and marine boundary layer dynamics in the ASTEX Lagrangian experiments. Part II: Cloudiness, drizzle, surface fluxes, and entrainment. J. Atmos. Sci., 52, 27242735, https://doi.org/10.1175/1520-0469(1995)052<2724:CAMBLD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carslaw, K. S., and Coauthors, 2013: Large contribution of natural aerosols to uncertainty in indirect forcing. Nature, 503, 6771, https://doi.org/10.1038/nature12674.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cho, H.-M., and Coauthors, 2015: Frequency and causes of failed MODIS cloud property retrievals for liquid phase clouds over global oceans. J. Geophys. Res. Atmos., 120, 41324154, https://doi.org/10.1002/2015JD023161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Engström, A., F. A.-M. Bender, R. J. Charlson, and R. Wood, 2015: The nonlinear relationship between albedo and cloud fraction on near-global, monthly mean scale in observations and in the CMIP5 model ensemble. Geophys. Res. Lett., 42, 95719578, https://doi.org/10.1002/2015GL066275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., R. J. Cotton, K. McBeath, A. P. Lock, S. Webster, and R. P. Allan, 2014: Improving a convection-permitting model simulation of a cold air outbreak. Quart. J. Roy. Meteor. Soc., 140, 124138, https://doi.org/10.1002/qj.2116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fugal, J. P., and R. A. Shaw, 2009: Cloud particle size distributions measured with an airborne digital in-line holographic instrument. Atmos. Meas. Tech., 2, 259271, https://doi.org/10.5194/amt-2-259-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • George, R. C., and R. Wood, 2010: Subseasonal variability of low cloud radiative properties over the southeast Pacific Ocean. Atmos. Chem. Phys., 10, 40474063, https://doi.org/10.5194/acp-10-4047-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glienke, S., A. Kostinski, J. Fugal, R. A. Shaw, S. Borrmann, and J. Stith, 2017: Cloud droplets to drizzle: Contribution of transition drops to microphysical and optical properties of marine stratocumulus clouds, Geophys. Res. Lett., 44, 80028010, https://doi.org/10.1002/2017GL074430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grund, C. J., and E. W. Eloranta, 1991: University of Wisconsin high spectral resolution lidar. Opt. Eng., 30, 612, https://doi.org/10.1117/12.55766.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guzman, R., and Coauthors, 2017: Direct atmosphere opacity observations from CALIPSO provide new constraints on cloud-radiation interactions. J. Geophys. Res. Atmos., 122, 10661085, https://doi.org/10.1002/2016JD025946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hindman, E. E., W. M. Porch, J. G. Hudson, and P. A. Durkee, 1994: Ship-produced cloud lines of 13 July 1991. Atmos. Environ., 28, 33933403, https://doi.org/10.1016/1352-2310(94)00171-G.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., 2003: Clean air slots amid dense atmospheric pollution in southern Africa. J. Geophys. Res., 108, 8490, https://doi.org/10.1029/2002JD002156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hudson, J. G., and Y. Xie, 1999: Vertical distributions of cloud condensation nuclei spectra over the summertime northeast Pacific and Atlantic Oceans. J. Geophys. Res., 104, 30 21930 229, https://doi.org/10.1029/1999JD900413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karlsson, J., G. Svensson, S. Cardoso, J. Teixeira, and S. Paradise, 2010: Subtropical cloud-regime transitions: Boundary layer depth and cloud-top height evolution in models and observations. J. Appl. Meteor. Climatol., 49, 18451858, https://doi.org/10.1175/2010JAMC2338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kazil, J., H. Wang, G. Feingold, A. D. Clarke, J. R. Snider, and A. R. Bandy, 2011: Modeling chemical and aerosol processes in the transition from closed to open cells during VOCALS-REx. Atmos. Chem. Phys., 11, 74917514, https://doi.org/10.5194/acp-11-7491-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kooperman, G. J., M. S. Pritchard, S. J. Ghan, M. Wang, R. C. J. Somerville, and L. M. Russell, 2012: Constraining the influence of natural variability to improve estimates of global aerosol indirect effects in a nudged version of the Community Atmosphere Model 5. J. Geophys. Res., 117, D23204, https://doi.org/10.1029/2012JD018588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krueger, S. K., G. T. McLean, and Q. Fu, 1995: Numerical simulation of the stratus-to-cumulus transition in the subtropical marine boundary layer. Part II: Boundary-layer circulation. J. Atmos. Sci., 52, 28512868, https://doi.org/10.1175/1520-0469(1995)052<2851:NSOTST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leahy, L. V., R. Wood, R. J. Charlson, C. A. Hostetler, R. R. Rogers, M. A. Vaughan, and D. M. Winker, 2012: On the nature and extent of optically thin marine low clouds. J. Geophys. Res., 117, D22201, https://doi.org/10.1029/2012JD017929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, L. A., C. L. Reddington, and K. S. Carslaw, 2016: On the relationship between aerosol model uncertainty and radiative forcing uncertainty. Proc. Natl. Acad. Sci. USA, 113, 58205827, https://doi.org/10.1073/pnas.1507050113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, M.-L., W. C. Conant, H. H. Jonsson, V. Varutbangkul, R. C. Flagan, and J. H. Seinfeld, 2007: The Marine Stratus/Stratocumulus Experiment (MASE): Aerosol-cloud relationships in marine stratocumulus. J. Geophys. Res., 112, D10209, https://doi.org/10.1029/2006JD007985.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, G. M., D. W. Johnson, and A. Spice, 1994: The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds. J. Atmos. Sci., 51, 18231842, https://doi.org/10.1175/1520-0469(1994)051<1823:TMAPOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, G. M., D. W. Johnson, D. P. Rogers, P. R. Jonas, P. Minnis, and D. A. Hegg, 1995: Observations of the interaction between cumulus clouds and warm stratocumulus clouds in the marine boundary layer during ASTEX. J. Atmos. Sci., 52, 29022922, https://doi.org/10.1175/1520-0469(1995)052<2902:OOTIBC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mauritsen, T., and Coauthors, 2011: An Arctic CCN-limited cloud-aerosol regime. Atmos. Chem. Phys., 11, 165173, https://doi.org/10.5194/acp-11-165-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miles, N. L., J. Verlinde, and E. E. Clothiaux, 2000: Cloud droplet size distributions in low-level stratiform clouds. J. Atmos. Sci., 57, 295311, https://doi.org/10.1175/1520-0469(2000)057<0295:CDSDIL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, M. A., and B. A. Albrecht, 1995: Surface-based observations of mesoscale cumulus–stratocumulus interaction during ASTEX. J. Atmos. Sci., 52, 28092826, https://doi.org/10.1175/1520-0469(1995)052<2809:SBOOMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minnis, P., and Coauthors, 2008a: Cloud detection in nonpolar regions for CERES using TRMM VIRS and Terra and Aqua MODIS data. IEEE Trans. Geosci. Remote Sens., 46, 38573884, https://doi.org/10.1109/TGRS.2008.2001351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minnis, P., and Coauthors, 2008b: Near-real time cloud retrievals from operational and research meteorological satellites. Remote Sensing of Clouds and the Atmosphere XIII, R. H. Picard et al., Eds., Society of Photo-Optical Instrumentation Engineers (SPIE Proceedings, Vol. 7107), 710703, https://doi.org/10.1117/12.800344.

    • Crossref
    • Export Citation
  • Minnis, P., and Coauthors, 2011: CERES Edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data—Part I: Algorithms. IEEE Trans. Geosci. Remote Sens., 49, 43744400, https://doi.org/10.1109/TGRS.2011.2144601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morcrette, J.-J., and Y. Fouquart, 1986: The overlapping of cloud layers in shortwave radiation parameterizations. J. Atmos. Sci., 43, 321328, https://doi.org/10.1175/1520-0469(1986)043<0321:TOOCLI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muhlbauer, A., I. L. McCoy, and R. Wood, 2014: Climatology of stratocumulus cloud morphologies: Microphysical properties and radiative effects. Atmos. Chem. Phys., 14, 66956716, https://doi.org/10.5194/acp-14-6695-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nam, C., S. Bony, J.-L. Dufresne, and H. Chepfer, 2012: The too few, too bright tropical low-cloud problem in CMIP5 models. Geophys. Res. Lett., 39, L21801, https://doi.org/10.1029/2012GL053421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O, K.-T., R. Wood, and C. S. Bretherton, 2018: Ultraclean layers and optically thin clouds in the stratocumulus-to-cumulus transition. Part II: Depletion of cloud droplets and cloud condensation nuclei through collision–coalescence. J. Atmos. Sci., 75, 16531673, https://doi.org/10.1175/JAS-D-17-0218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Connor, E. J., R. J. Hogan, and A. J. Illingworth, 2005: Retrieving stratocumulus drizzle parameters using Doppler radar and lidar. J. Appl. Meteor., 44, 1427, https://doi.org/10.1175/JAM-2181.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Painemal, D., P. Minnis, and M. Nordeen, 2015: Aerosol variability, synoptic-scale processes, and their link to the cloud microphysics over the northeast Pacific during MAGIC. J. Geophys. Res. Atmos., 120, 51225139, https://doi.org/10.1002/2015JD023175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perry, K., and P. V. Hobbs, 1996: Influences of isolated cumulus clouds on the humidity of their surroundings. J. Atmos. Sci., 53, 159174, https://doi.org/10.1175/1520-0469(1996)053<0159:IOICCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petters, M. D., J. R. Snider, B. Stevens, G. Vali, I. Faloona, and L. M. Russell, 2006: Accumulation mode aerosol, pockets of open cells, and particle nucleation in the remote subtropical Pacific marine boundary layer. J. Geophys. Res., 111, D02206, https://doi.org/10.1029/2004JD005694.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Platnick, S., and S. Twomey, 1994: Determining the susceptibility of cloud albedo to changes in droplet concentration with the Advanced Very High Resolution Radiometer. J. Appl. Meteor., 33, 334347, https://doi.org/10.1175/1520-0450(1994)033<0334:DTSOCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and A. M. Blyth, 1986: A stochastic mixing model for nonprecipitating cumulus clouds. J. Atmos. Sci., 43, 27082718, https://doi.org/10.1175/1520-0469(1986)043<2708:ASMMFN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sandu, I., and B. Stevens, 2011: On the factors modulating the stratocumulus to cumulus transitions. J. Atmos. Sci., 68, 18651881, https://doi.org/10.1175/2011JAS3614.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sandu, I., B. Stevens, and R. Pincus, 2010: On the transitions in marine boundary layer cloudiness. Atmos. Chem. Phys., 10, 23772391, https://doi.org/10.5194/acp-10-2377-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharon, T. M., B. A. Albrecht, H. H. Jonsson, P. Minnis, M. M. Khaiyer, T. M. van Reken, J. Seinfeld, and R. Flagan, 2006: Aerosol and cloud microphysical characteristics of rifts and gradients in maritime stratocumulus clouds. J. Atmos. Sci., 63, 983997, https://doi.org/10.1175/JAS3667.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2001: Simulations of trade wind cumuli under a strong inversion. J. Atmos. Sci., 58, 18701891, https://doi.org/10.1175/1520-0469(2001)058<1870:SOTWCU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., G. Vali, K. Comstock, R. Wood, M. C. Van Zanten, P. H. Austin, C. S. Bretherton, and D. H. Lenschow, 2005: Pockets of open cells and drizzle in marine stratocumulus. Bull. Amer. Meteor. Soc., 86, 5157, https://doi.org/10.1175/BAMS-86-1-51.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teixeira, J., and Coauthors, 2011: Tropical and subtropical cloud transitions in weather and climate prediction models: The GCSS/WGNE Pacific Cross-Section Intercomparison (GPCI). J. Climate, 24, 52235256, https://doi.org/10.1175/2011JCLI3672.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terai, C. R., C. S. Bretherton, R. Wood, and G. Painter, 2014: Aircraft observations of aerosol, cloud, precipitation, and boundary layer properties in pockets of open cells over the southeast Pacific. Atmos. Chem. Phys., 14, 80718088, https://doi.org/10.5194/acp-14-8071-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., and Coauthors, 2015: A wing pod-based millimeter wavelength airborne cloud radar. Geosci. Instrum. Methods Data Syst., 4, 161176, https://doi.org/10.5194/gi-4-161-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., 1997: A well-calibrated ocean algorithm for special sensor microwave/imager. J. Geophys. Res., 102, 87038718, https://doi.org/10.1029/96JC01751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, K. D., and Coauthors, 2013: The Transpose-AMIP II experiment and its application to the understanding of Southern Ocean cloud biases in climate models. J. Climate, 26, 32583274, https://doi.org/10.1175/JCLI-D-12-00429.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winker, D. M., and L. R. Poole, 1995: Monte-Carlo calculations of cloud returns for ground-based and space-based lidars. Appl. Phys., 60B, 341344, https://doi.org/10.1007/BF01082269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., 2000: Parametrization of the effect of drizzle upon the droplet effective radius in stratocumulus clouds. Quart. J. Roy. Meteor. Soc., 126, 33093324, https://doi.org/10.1002/qj.49712657015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., 2012: Stratocumulus clouds. Mon. Wea. Rev., 140, 23732423, https://doi.org/10.1175/MWR-D-11-00121.1.

  • Wood, R., K. K. Comstock, C. S. Bretherton, C. Cornish, J. Tomlinson, D. R. Collins, and C. Fairall, 2008: Open cellular structure in marine stratocumulus sheets. J. Geophys. Res., 113, D12207, https://doi.org/10.1029/2007JD009371.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., C. S. Bretherton, D. Leon, A. D. Clarke, P. Zuidema, G. Allen, and H. Coe, 2011: An aircraft case study of the spatial transition from closed to open mesoscale cellular convection over the southeast Pacific. Atmos. Chem. Phys., 11, 23412370, https://doi.org/10.5194/acp-11-2341-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., D. Leon, M. Lebsock, J. Snider, and A. D. Clarke, 2012: Precipitation driving of droplet concentration variability in marine low clouds. J. Geophys. Res., 117, D19210, https://doi.org/10.1029/2012JD018305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., C. S. Bretherton, H. A. Rand, and D. E. Stevens, 1997: Numerical simulations and a conceptual model of the stratocumulus to trade cumulus transition. J. Atmos. Sci., 54, 168192, https://doi.org/10.1175/1520-0469(1997)054<0168:NSAACM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamaguchi, T., G. Feingold, and J. Kazil, 2017: Stratocumulus to cumulus transition by drizzle. J. Adv. Model. Earth Syst., 9, 23332349, https://doi.org/10.1002/2017MS001104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, X., P. Kollias, and E. R. Lewis, 2015: Clouds, precipitation, and marine boundary layer structure during the MAGIC field campaign. J. Climate, 28, 24202442, https://doi.org/10.1175/JCLI-D-14-00320.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuidema, P., 1998: The 600–800-mb minimum in tropical cloudiness observed during TOGA COARE. J. Atmos. Sci., 55, 22202228, https://doi.org/10.1175/1520-0469(1998)055<2220:TMMITC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 13089 11525 877
PDF Downloads 793 153 12