• Ackerman, A. S., M. P. Kirkpatrick, D. E. Stevens, and O. B. Toon, 2004: The impact of humidity above stratiform clouds on indirect aerosol climate forcing. Nature, 432, 10141017, https://doi.org/10.1038/nature03174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 12271230, https://doi.org/10.1126/science.245.4923.1227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., C. W. Fairall, D. W. Thomson, A. B. White, J. B. Snider, and W. H. Schubert, 1990: Surface-based remote sensing of the observed and the adiabatic liquid water content of stratocumulus clouds. Geophys. Res. Lett., 17, 8992, https://doi.org/10.1029/GL017i001p00089.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, G., and Coauthors, 2011: South east Pacific atmospheric composition and variability sampled along 20°S during VOCALS-REx. Atmos. Chem. Phys., 11, 52375262, https://doi.org/10.5194/acp-11-5237-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berner, A. H., C. S. Bretherton, R. Wood, and A. Muhlbauer, 2013: Marine boundary layer cloud regimes and POC formation in a CRM coupled to a bulk aerosol scheme. Atmos. Chem. Phys., 13, 12 54912 572, https://doi.org/10.5194/acp-13-12549-2013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boers, R., and P. B. Krummel, 1998: Microphysical properties of boundary layer clouds over the Southern Ocean during ACE 1. J. Geophys. Res., 103, 16 65116 663, https://doi.org/10.1029/97JD03280.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boers, R., J. B. Jensen, P. B. Krummel, and H. Gerber, 1996: Microphysical and short-wave radiative structure of wintertime stratocumulus clouds over the Southern Ocean. Quart. J. Roy. Meteor. Soc., 122, 13071339, https://doi.org/10.1002/qj.49712253405.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bott, A., 1998: A flux method for the numerical solution of the stochastic collection equation. J. Atmos. Sci., 55, 22842293, https://doi.org/10.1175/1520-0469(1998)055<2284:AFMFTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bott, A., 2000: A flux method for the numerical solution of the stochastic collection equation: Extension to two-dimensional particle distributions. J. Atmos. Sci., 57, 284294, https://doi.org/10.1175/1520-0469(2000)057<0284:AFMFTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and Coauthors, 2004: The EPIC 2001 stratocumulus study. Bull. Amer. Meteor. Soc., 85, 967–978, https://doi.org/10.1175/BAMS-85-7-967.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., P. N. Blossey, and J. Uchida, 2007: Cloud droplet sedimentation, entrainment efficiency, and subtropical stratocumulus albedo. Geophys. Res. Lett., 34, L03813, https://doi.org/10.1029/2006GL027648.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Celik, F., and J. D. Marwitz, 1999: Droplet spectra broadening by ripening process. Part I: Roles of curvature and salinity of cloud droplets. J. Atmos. Sci., 56, 30913105, https://doi.org/10.1175/1520-0469(1999)056<3091:DSBBRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., Y. Liu, M. Zhang, and Y. Peng, 2016: New understanding and quantification of the regime dependence of aerosol-cloud interaction for studying aerosol indirect effects. Geophys. Res. Lett., 43, 17801787, https://doi.org/10.1002/2016GL067683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J.-P., and D. Lamb, 1994: Simulation of cloud microphysical and chemical processes using a multicomponent framework. Part I: Description of the microphysical model. J. Atmos. Sci., 51, 26132630, https://doi.org/10.1175/1520-0469(1994)051<2613:SOCMAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarke, A. D., S. R. Owens, and J. Zhou, 2006: An ultrafine sea-salt flux from breaking waves: Implications for cloud condensation nuclei in the remote marine atmosphere. J. Geophys. Res., 111, D06202, https://doi.org/10.1029/2005JD006565.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comstock, K. K., S. E. Yuter, R. Wood, and C. S. Bretherton, 2007: The three-dimensional structure and kinematics of drizzling stratocumulus. Mon. Wea. Rev., 135, 37673784, https://doi.org/10.1175/2007MWR1944.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eastman, R., R. Wood, and K. T. O, 2017: The subtropical stratocumulus-topped planetary boundary layer: A climatology and the Lagrangian evolution. J. Atmos. Sci., 74, 26332656, https://doi.org/10.1175/JAS-D-16-0336.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feingold, G., and H. Siebert, 2009: Cloud–aerosol interactions from the micro to the cloud scale. Clouds in the Perturbed Climate System: Their Relationship to Energy Balance, Atmospheric Dynamics, and Precipitation, J. Heintzenberg and R. Charlson, Eds., MIT Press, 319–338, https://doi.org/10.7551/mitpress/9780262012874.003.0014.

    • Crossref
    • Export Citation
  • Feingold, G., S. M. Kreidenweis, B. Stevens, and W. R. Cotton, 1996: Numerical simulations of stratocumulus processing of cloud condensation nuclei through collision-coalescence. J. Geophys. Res., 101, 21 39121 402, https://doi.org/10.1029/96JD01552.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferek, R. J., and Coauthors, 2000: Drizzle suppression in ship tracks. J. Atmos. Sci., 57, 27072728, https://doi.org/10.1175/1520-0469(2000)057<2707:DSIST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, H. E., G. M. Frick, J. B. Jensen, and J. G. Hudson, 2008: Entrainment, mixing, and microphysics in trade-wind cumulus. J. Meteor. Soc. Japan, 86, 87106, https://doi.org/10.2151/jmsj.86A.87.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghate, V. P., M. A. Miller, and L. DiPretore, 2011: Vertical velocity structure of marine boundary layer trade wind cumulus clouds. J. Geophys. Res., 116, D16206, https://doi.org/10.1029/2010JD015344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gultepe, I., and G. A. Isaac, 2004: Aircraft observations of cloud droplet number concentration: Implications for climate studies. Quart. J. Roy. Meteor. Soc., 130, 23772390, https://doi.org/10.1256/qj.03.120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, W. D., 1980: A detailed microphysical model within a two-dimensional dynamic framework: Model description and preliminary results. J. Atmos. Sci., 37, 24862507, https://doi.org/10.1175/1520-0469(1980)037<2486:ADMMWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., and A. L. Rangno, 1996: Precipitation from a maritime cloud layer with very low droplet concentrations. Atmos. Res., 40, 99107, https://doi.org/10.1016/0169-8095(95)00030-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2014: Cloud Dynamics. Academic Press, 432 pp.

  • Hudson, J. G., 1993: Cloud condensation nuclei near marine cumulus. J. Geophys. Res., 98, 26932702, https://doi.org/10.1029/92JD02169.

  • Hudson, J. G., and P. R. Frisbie, 1991: Cloud condensation nuclei near marine stratus. J. Geophys. Res., 96, 20 79520 808, https://doi.org/10.1029/91JD02212.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hudson, J. G., and H. Li, 1995: Microphysical contrasts in Atlantic stratus. J. Atmos. Sci., 52, 30313040, https://doi.org/10.1175/1520-0469(1995)052<3031:MCIAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, E., B. A. Albrecht, A. Sorooshian, P. Zuidema, and H. H. Jonsson, 2016: Precipitation susceptibility in marine stratocumulus and shallow cumulus from airborne measurements. Atmos. Chem. Phys., 16, 11 39511 413, https://doi.org/10.5194/acp-16-11395-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kogan, Y. L., 2006: Large-eddy simulation of air parcels in stratocumulus clouds: Time scales and spatial variability. J. Atmos. Sci., 63, 952967, https://doi.org/10.1175/JAS3665.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., and I. P. Mazin, 2003: Supersaturation of water vapor in clouds. J. Atmos. Sci., 60, 29572974, https://doi.org/10.1175/1520-0469(2003)060<2957:SOWVIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S.-S., G. Feingold, and P. Y. Chuang, 2012: Effect of aerosol on cloud–environment interactions in trade cumulus. J. Atmos. Sci., 69, 36073632, https://doi.org/10.1175/JAS-D-12-026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, M.-L., W. C. Conant, H. H. Jonsson, V. Varutbangkul, R. C. Flagan, and J. H. Seinfeld, 2007: The Marine Stratus/Stratocumulus Experiment (MASE): Aerosol-cloud relationships in marine stratocumulus. J. Geophys. Res., 112, D10209, https://doi.org/10.1029/2006JD007985.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ovchinnikov, M., R. C. Easter, and W. I. Gustafson, 2013: Untangling dynamical and microphysical controls for the structure of stratocumulus. Geophys. Res. Lett., 40, 44324436, https://doi.org/10.1002/grl.50810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petters, M., and S. Kreidenweis, 2007: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys., 7, 19611971, https://doi.org/10.5194/acp-7-1961-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinsky, M., I. Mazin, A. Korolev, and A. Khain, 2013: Supersaturation and diffusional droplet growth in liquid clouds. J. Atmos. Sci., 70, 27782793, https://doi.org/10.1175/JAS-D-12-077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinsky, M., I. Mazin, A. Korolev, and A. Khain, 2014: Supersaturation and diffusional droplet growth in liquid clouds: Polydisperse spectra. J. Geophys. Res. Atmos., 119, 12 87212 887, https://doi.org/10.1002/2014JD021885.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pringle, K., H. Tost, A. Pozzer, U. Pöschl, and J. Lelieveld, 2010: Global distribution of the effective aerosol hygroscopicity parameter for CCN activation. Atmos. Chem. Phys., 10, 52415255, https://doi.org/10.5194/acp-10-5241-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 2012: Microphysics of Clouds and Precipitation. Springer Science and Business Media, 714 pp.

  • Rauber, R. M., and Coauthors, 2007: Rain in shallow cumulus over the ocean: The RICO campaign. Bull. Amer. Meteor. Soc., 88, 19121928, https://doi.org/10.1175/BAMS-88-12-1912.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., and M. Yau, 1989: A Short Course in Cloud Physics. International Series in Natural Philosophy, Butterworth Heinemann, 304 pp.

    • Search Google Scholar
    • Export Citation
  • Sharon, T. M., B. A. Albrecht, H. H. Jonsson, P. Minnis, M. M. Khaiyer, T. M. van Reken, J. Seinfeld, and R. Flagan, 2006: Aerosol and cloud microphysical characteristics of rifts and gradients in maritime stratocumulus clouds. J. Atmos. Sci., 63, 983997, https://doi.org/10.1175/JAS3667.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Small, J. D., P. Y. Chuang, G. Feingold, and H. Jiang, 2009: Can aerosol decrease cloud lifetime? Geophys. Res. Lett., 36, L16806, https://doi.org/10.1029/2009GL038888.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorooshian, A., G. Feingold, M. D. Lebsock, H. Jiang, and G. L. Stephens, 2009: On the precipitation susceptibility of clouds to aerosol perturbations. Geophys. Res. Lett., 36, L13803, https://doi.org/10.1029/2009GL038993.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Squires, P., 1958: The spatial variation of liquid water and droplet concentration in cumuli. Tellus, 10A, 372380, https://doi.org/10.3402/tellusa.v10i3.9244.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and C. M. R. Platt, 1987: Aircraft observations of the radiative and microphysical properties of stratocumulus and cumulus cloud fields. J. Climate Appl. Meteor., 26, 12431269, https://doi.org/10.1175/1520-0450(1987)026<1243:AOOTRA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terai, C. R., R. Wood, D. Leon, and P. Zuidema, 2012: Does precipitation susceptibility vary with increasing cloud thickness in marine stratocumulus? Atmos. Chem. Phys., 12, 45674583, https://doi.org/10.5194/acp-12-4567-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terai, C. R., C. S. Bretherton, R. Wood, and G. Painter, 2014: Aircraft observations of aerosol, cloud, precipitation, and boundary layer properties in pockets of open cells over the southeast Pacific. Atmos. Chem. Phys., 14, 80718088, https://doi.org/10.5194/acp-14-8071-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terai, C. R., R. Wood, and T. Kubar, 2015: Satellite estimates of precipitation susceptibility in low-level marine stratiform clouds. J. Geophys. Res. Atmos., 120, 88788889, https://doi.org/10.1002/2015JD023319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34, 11491152, https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weickmann, H., and H. Aufm Kampe, 1953: Physical properties of cumulus clouds. J. Meteor., 10, 204211, https://doi.org/10.1175/1520-0469(1953)010<0204:PPOCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., 2005: Drizzle in stratiform boundary layer clouds. Part II: Microphysical aspects. J. Atmos. Sci., 62, 30343050, https://doi.org/10.1175/JAS3530.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., 2006: Rate of loss of cloud droplets by coalescence in warm clouds. J. Geophys. Res., 111, D21205, https://doi.org/10.1029/2006JD007553.

  • Wood, R., 2007: Cancellation of aerosol indirect effects in marine stratocumulus through cloud thinning. J. Atmos. Sci., 64, 26572669, https://doi.org/10.1175/JAS3942.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., S. Irons, and P. Jonas, 2002: How important is the spectral ripening effect in stratiform boundary layer clouds? Studies using simple trajectory analysis. J. Atmos. Sci., 59, 26812693, https://doi.org/10.1175/1520-0469(2002)059<2681:HIITSR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., T. L. Kubar, and D. L. Hartmann, 2009: Understanding the importance of microphysics and macrophysics for warm rain in marine low clouds. Part II: Heuristic models of rain formation. J. Atmos. Sci., 66, 29732990, https://doi.org/10.1175/2009JAS3072.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., C. S. Bretherton, D. Leon, A. D. Clarke, P. Zuidema, G. Allen, and H. Coe, 2011: An aircraft case study of the spatial transition from closed to open mesoscale cellular convection over the southeast Pacific. Atmos. Chem. Phys., 11, 23412370, https://doi.org/10.5194/acp-11-2341-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., D. Leon, M. Lebsock, J. Snider, and A. D. Clarke, 2012: Precipitation driving of droplet concentration variability in marine low clouds. J. Geophys. Res., 117, D19210, https://doi.org/10.1029/2012JD018305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., and Coauthors, 2018: Ultraclean layers and optically thin clouds in the stratocumulus-to-cumulus transition. Part I: Observations. J. Atmos. Sci., 75, 16311652, https://doi.org/10.1175/JAS-D-17-0213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Q., and Coauthors, 2012: Impact of natural and anthropogenic aerosols on stratocumulus and precipitation in the southeast Pacific: A regional modelling study using WRF-Chem. Atmos. Chem. Phys., 12, 87778796, https://doi.org/10.5194/acp-12-8777-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., P. Massoli, P. K. Quinn, T. S. Bates, and C. D. Cappa, 2014: Hygroscopic growth of submicron and supermicron aerosols in the marine boundary layer. J. Geophys. Res. Atmos., 119, 83848399, https://doi.org/10.1002/2013JD021213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, Y., D. Rosenfeld, and Z. Li, 2016: Quantifying cloud base updraft speeds of marine stratocumulus from cloud top radiative cooling. Geophys. Res. Lett., 43, 11 40711 413, https://doi.org/10.1002/2016GL071185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuidema, P., E. R. Westwater, C. Fairall, and D. Hazen, 2005: Ship-based liquid water path estimates in marine stratocumulus. J. Geophys. Res., 110, D20206, https://doi.org/10.1029/2005JD005833.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 10 10 10
PDF Downloads 5 5 5

Ultraclean Layers and Optically Thin Clouds in the Stratocumulus-to-Cumulus Transition. Part II: Depletion of Cloud Droplets and Cloud Condensation Nuclei through Collision–Coalescence

View More View Less
  • 1 Department of Atmospheric Sciences, University of Washington, Seattle, Washington
Restricted access

Abstract

In Part I, aircraft observations are used to show that ultraclean layers (UCLs) in the marine boundary layer (MBL) are a common feature of the stratocumulus-to-cumulus transition (SCT) region over the northeast Pacific. The ultraclean layers are defined as layers of either cloud or clear air in which the concentration of particles with diameter larger than 0.1 μm is below 10 cm−3. Here, idealized microphysical parcel modeling shows that in the cumulus regime, collision–coalescence can strongly deplete cloud droplet concentration in cumulus (Cu) updrafts, thereby removing cloud condensation nuclei (CCN) from the atmosphere, suggesting that collision scavenging is likely the key process causing the low particle concentration in UCLs. Furthermore, the model results suggest that the stratocumulus regime is typically not favorable for UCL formation, because condensate amounts are generally not large enough to deplete drops in the time it takes to loft air to the upper planetary boundary layer (PBL). A bulk parameterization of the coalescence-scavenging rate is derived based on in situ measurements. The fractional coalescence-scavenging rate is found to be strongly dependent upon liquid water content (LWC) and, hence, the height above cloud base, indicating that a higher cloud top and thus a greater cloud thickness in a Cu updraft is an important factor accounting for the observed sharp rise of UCL coverage in the SCT region. An important implication is that PBL height, which controls maximum cloud thickness, and therefore LWC in updrafts, could be a crucial factor constraining coalescence scavenging and thus the formation of UCLs in the MBL.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kuan-Ting O, ktoandy@uw.edu

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-17-0213.1

Abstract

In Part I, aircraft observations are used to show that ultraclean layers (UCLs) in the marine boundary layer (MBL) are a common feature of the stratocumulus-to-cumulus transition (SCT) region over the northeast Pacific. The ultraclean layers are defined as layers of either cloud or clear air in which the concentration of particles with diameter larger than 0.1 μm is below 10 cm−3. Here, idealized microphysical parcel modeling shows that in the cumulus regime, collision–coalescence can strongly deplete cloud droplet concentration in cumulus (Cu) updrafts, thereby removing cloud condensation nuclei (CCN) from the atmosphere, suggesting that collision scavenging is likely the key process causing the low particle concentration in UCLs. Furthermore, the model results suggest that the stratocumulus regime is typically not favorable for UCL formation, because condensate amounts are generally not large enough to deplete drops in the time it takes to loft air to the upper planetary boundary layer (PBL). A bulk parameterization of the coalescence-scavenging rate is derived based on in situ measurements. The fractional coalescence-scavenging rate is found to be strongly dependent upon liquid water content (LWC) and, hence, the height above cloud base, indicating that a higher cloud top and thus a greater cloud thickness in a Cu updraft is an important factor accounting for the observed sharp rise of UCL coverage in the SCT region. An important implication is that PBL height, which controls maximum cloud thickness, and therefore LWC in updrafts, could be a crucial factor constraining coalescence scavenging and thus the formation of UCLs in the MBL.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kuan-Ting O, ktoandy@uw.edu

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-17-0213.1

Save