Primary Modes of Global Drop Size Distributions

B. Dolan Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by B. Dolan in
Current site
Google Scholar
PubMed
Close
,
B. Fuchs Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by B. Fuchs in
Current site
Google Scholar
PubMed
Close
,
S. A. Rutledge Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by S. A. Rutledge in
Current site
Google Scholar
PubMed
Close
,
E. A. Barnes Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by E. A. Barnes in
Current site
Google Scholar
PubMed
Close
, and
E. J. Thompson Applied Physics Laboratory, University of Washington, Seattle, Washington

Search for other papers by E. J. Thompson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Understanding drop size distribution (DSD) variability has important implications for remote sensing and numerical modeling applications. Twelve disdrometer datasets across three latitude bands are analyzed in this study, spanning a broad range of precipitation regimes: light rain, orographic, deep convective, organized midlatitude, and tropical oceanic. Principal component analysis (PCA) is used to reveal comprehensive modes of global DSD spatial and temporal variability. Although the locations contain different distributions of individual DSD parameters, all locations are found to have the same modes of variability. Based on PCA, six groups of points with unique DSD characteristics emerge. The physical processes that underpin these groups are revealed through supporting radar observations. Group 1 (group 2) is characterized by high (low) liquid water content (LWC), broad (narrow) distribution widths, and large (small) median drop diameters D0. Radar analysis identifies group 1 (group 2) as convective (stratiform) rainfall. Group 3 is characterized by weak, shallow radar echoes and large concentrations of small drops, indicative of warm rain showers. Group 4 identifies heavy stratiform precipitation. The low latitudes exhibit distinct bimodal distributions of the normalized intercept parameter Nw, LWC, and D0 and are found to have a clustering of points (group 5) with high rain rates, large Nw, and moderate D0, a signature of robust warm rain processes. A distinct group associated with ice-based convection (group 6) emerges in the midlatitudes. Although all locations exhibit the same covariance of parameters associated with these groups, it is likely that the physical processes responsible for shaping the DSDs vary as a function of location.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-17-0242.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Brenda Dolan, bdolan@atmos.colostate.edu

Abstract

Understanding drop size distribution (DSD) variability has important implications for remote sensing and numerical modeling applications. Twelve disdrometer datasets across three latitude bands are analyzed in this study, spanning a broad range of precipitation regimes: light rain, orographic, deep convective, organized midlatitude, and tropical oceanic. Principal component analysis (PCA) is used to reveal comprehensive modes of global DSD spatial and temporal variability. Although the locations contain different distributions of individual DSD parameters, all locations are found to have the same modes of variability. Based on PCA, six groups of points with unique DSD characteristics emerge. The physical processes that underpin these groups are revealed through supporting radar observations. Group 1 (group 2) is characterized by high (low) liquid water content (LWC), broad (narrow) distribution widths, and large (small) median drop diameters D0. Radar analysis identifies group 1 (group 2) as convective (stratiform) rainfall. Group 3 is characterized by weak, shallow radar echoes and large concentrations of small drops, indicative of warm rain showers. Group 4 identifies heavy stratiform precipitation. The low latitudes exhibit distinct bimodal distributions of the normalized intercept parameter Nw, LWC, and D0 and are found to have a clustering of points (group 5) with high rain rates, large Nw, and moderate D0, a signature of robust warm rain processes. A distinct group associated with ice-based convection (group 6) emerges in the midlatitudes. Although all locations exhibit the same covariance of parameters associated with these groups, it is likely that the physical processes responsible for shaping the DSDs vary as a function of location.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-17-0242.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Brenda Dolan, bdolan@atmos.colostate.edu

Supplementary Materials

    • Supplemental Materials (DOCX 1.23 MB)
Save
  • Ackerman, T. P., and G. Stokes, 2003: The Atmospheric Radiation Measurement Program. Phys. Today, 56, 3845, https://doi.org/10.1063/1.1554135.

  • Atlas, D., and C. W. Ulbrich, 2000: An observationally based conceptual model of warm oceanic convective rain in the tropics. J. Appl. Meteor., 39, 21652181, https://doi.org/10.1175/1520-0450(2001)040<2165:AOBCMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atlas, D., C. W. Ulbrich, F. D. Marks Jr., E. Amitai, and C. R. Williams, 1999: Systematic variation of drop size and radar–rainfall relations. J. Geophys. Res., 104, 61556169, https://doi.org/10.1029/1998JD200098.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atlas, D., C. W. Ulbrich, F. D. Marks Jr., R. A. Black, E. Amitai, P. T. Willis, and C. E. Samsury, 2000: Partitioning tropical oceanic convective and stratiform rains by draft strength. J. Geophys. Res., 105, 22592267, https://doi.org/10.1029/1999JD901009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barros, A. P., and Coauthors, 2014: The GPM GV Integrated Precipitation and Hydrology Experiment (IPHEx) in the southern Appalachians—Focus on water cycle processes. 2014 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract H11M-04.

  • Battaglia, A., E. Rustemeier, A. Tokay, U. Blahak, and C. Simmer, 2010: PARSIVEL snow observations: A critical assessment. J. Atmos. Oceanic Technol., 27, 333344, https://doi.org/10.1175/2009JTECHA1332.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Battan, L. J., 1973: Radar Observation of the Atmosphere. University of Chicago Press, 324 pp.

  • Berry, E. X., and R. L. Reinhardt, 1974: An analysis of cloud drop growth by collection: Part I. Double distributions. J. Atmos. Sci., 31, 18141824, https://doi.org/10.1175/1520-0469(1974)031<1814:AAOCDG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

    • Crossref
    • Export Citation
  • Bringi, V. N., V. Chandrasekar, J. Hubbert, E. Gorgucci, W. L. Randeu, and M. Schönhuber, 2003: Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci., 60, 354365, https://doi.org/10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., C. R. Williams, M. Thurai, and P. T. May, 2009: Using dual-polarized radar and dual-frequency profiler for DSD characterization: A case study from Darwin, Australia. J. Atmos. Oceanic Technol., 26, 21072122, https://doi.org/10.1175/2009JTECHA1258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., G.-J. Huang, S. J. Munchak, C. D. Kummerow, D. A. Marks, and D. B. Wolff, 2012: Comparison of drop size distribution parameter (D0) and rain rate from S-band dual-polarized ground radar, TRMM precipitation radar (PR), and combined PR–TMI: Two events from Kwajalein Atoll. J. Atmos. Oceanic Technol., 29, 16031616, https://doi.org/10.1175/JTECH-D-11-00153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carr, N., P. E. Kirstetter, J. J. Gourley, and Y. Hong, 2017: Polarimetric signatures of midlatitude warm-rain precipitation events. J. Appl. Meteor. Climatol., 56, 697711, https://doi.org/10.1175/JAMC-D-16-0164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., G. Bryan, and S. C. van den Heever, 2010: Storm and Cloud Dynamics. Vol. 99, Academic Press, 809 pp.

  • Cotton, W. R., G. Bryan, and S. C. van den Heever, 2011: Cumulonimbus clouds and severe convective storms. Storm and Cloud Dynamics—The Dynamics of Clouds and Precipitating Mesoscale Systems, W. R. Cotton, G. Bryan, and S. van den Heever, Eds., International Geophysics Series, Vol. 99, Academic Press, 315454, https://doi.org/10.1016/S0074-6142(10)09914-6.

    • Crossref
    • Export Citation
  • Hannachi, A., I. Jolliffe, and D. Stephenson, 2007: Empirical orthogonal functions and related techniques in atmospheric science: A review. Int. J. Climatol., 27, 11191152, https://doi.org/10.1002/joc.1499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helmus, J. J., and S. M. Collis, 2016: The Python ARM Radar Toolkit (Py-ART), a library for working with weather radar data in the Python programming language. J. Open Res. Software, 4, p.e25, https://doi.org/10.5334/jors.119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement Mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr. , 1997: Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc., 78, 21792196, https://doi.org/10.1175/1520-0477(1997)078<2179:SPIROC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., and Coauthors, 2017: The Olympic Mountains Experiment (OLYMPEX). Bull. Amer. Meteor. Soc., 98, 21672188, https://doi.org/10.1175/BAMS-D-16-0182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, M. P., and Coauthors, 2015: The Midlatitude Continental Convective Clouds Experiment (MC3E). Bull. Amer. Meteor. Soc., 97, 16671686, https://doi.org/10.1175/BAMS-D-14-00228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joss, J., and A. Waldvogel, 1967: Ein Spektograph für Niederschlagstopfen mit automatischer Auswertung. Pure Appl. Geophys., 68, 240246, https://doi.org/10.1007/BF00874898.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kennedy, P. C., and S. A. Rutledge, 2011: S-band dual-polarization radar observations of winter storms. J. Appl. Meteor. Climatol., 50, 844858, https://doi.org/10.1175/2010JAMC2558.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and O. Prat, 2014: The impact of raindrop collisional processes on the polarimetric radar variables. J. Atmos. Sci., 71, 30523067, https://doi.org/10.1175/JAS-D-13-0357.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larsen, M. L., and K. A. O’Dell, 2016: Sampling variability effects in drop-resolving disdrometer observations. J. Geophys. Res. Atmos., 121, 11 77711 791, https://doi.org/10.1002/2016JD025491.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K.-M. and H. T. Wu, 2003: Warm rain processes over tropical oceans and climate implications. Geophys. Res. Lett., 30, 2290, https://doi.org/10.1029/2003GL018567.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T., W. A. Petersen, and D. N. Moisseev, 2010: Light Precipitation Validation Experiment (LPVEx): Overview and results. 2010 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract A13K-02.

  • Long, C. N., and Coauthors, 2011: ARM MJO investigation experiment on Gan Island (AMIE-Gan) science plan. ARM Tech. Rep. DOE/SC-ARM-11-005, 63 pp., https://www.arm.gov/publications/programdocs/doe-sc-arm-11-005.pdf.

  • May, P. T., J. H. Mather, G. Vaughan, C. Jakob, G. M. McFarquhar, K. N. Bower, and G. G. Mace, 2008: The Tropical Warm Pool International Cloud Experiment. Bull. Amer. Meteor. Soc., 89, 629646, https://doi.org/10.1175/BAMS-89-5-629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., R. L. Walko, J. Y. Harrington, and W. R. Cotton, 1997: New RAMS cloud microphysics parameterization. Part II: The two-moment scheme. Atmos. Res., 45, 339, https://doi.org/10.1016/S0169-8095(97)00018-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 30513064, https://doi.org/10.1175/JAS3534.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munchak, S. J., C. D. Kummerow, and G. Elsaesser, 2012: Relationships between the raindrop size distribution and properties of the environment and clouds inferred from TRMM. J. Climate, 25, 29632978, https://doi.org/10.1175/JCLI-D-11-00274.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petäjä, T., and Coauthors, 2016: BAECC: A field campaign to elucidate the impact of biogenic aerosols on clouds and climate. Bull. Amer. Meteor. Soc., 97, 19091928, https://doi.org/10.1175/BAMS-D-14-00199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petersen, W. and P. Gatlin, 2013: GPM ground validation two-dimensional video disdrometer (2DVD) IFloodS. NASA EOSDIS Global Hydrology Resource Center Distributed Active Archive Center, accessed 5 September 2014, https://doi.org/10.5067/GPMGV/IFLOODS/2DVD/DATA301.

    • Crossref
    • Export Citation
  • Petersen, W. and P. Gatlin, 2014: GPM ground validation two-dimensional video disdrometer (2DVD) IPHEx. NASA EOSDIS Global Hydrology Resource Center Distributed Active Archive Center, accessed 14 September 2014, https://doi.org/10.5067/GPMGV/IPHEX/2DVD/DATA301.

    • Crossref
    • Export Citation
  • Petersen, W., L. Carey, V. N. Bringi, A. Tokay, and P. Gatlin, 2010: GPM ground validation two-dimensional video disdrometer (2DVD) LPVEx. NASA EOSDIS Global Hydrology Resource Center Distributed Active Archive Center, accessed 13 January 2011, https://doi.org/10.5067/GPMGV/LPVEX/2DVD/DATA301.

    • Crossref
    • Export Citation
  • Petersen, W., L. Carey, V. N. Bringi, A. Tokay, and P. Gatlin, 2011: GPM ground validation two-dimensional video disdrometer (2DVD) MC3E. NASA EOSDIS Global Hydrology Resource Center Distributed Active Archive Center, accessed 11 December 2011, https://doi.org/10.5067/GPMGV/MC3E/2DVD/DATA301.

    • Crossref
    • Export Citation
  • Petty, G. W., and W. Huang, 2011: The modified gamma size distribution applied to inhomogeneous and nonspherical particles: Key relationships and conversions. J. Atmos. Sci., 68, 14601473, https://doi.org/10.1175/2011JAS3645.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, C., and D. Rind, 1993: What determines the cloud‐to‐ground lightning fraction in thunderstorms? Geophys. Res. Lett., 20, 463466, https://doi.org/10.1029/93GL00226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and R. A. Houze Jr., 1987: A diagnostic modeling study of the trailing stratiform region of a midlatitude squall line. J. Atmos. Sci., 44, 26402656, https://doi.org/10.1175/1520-0469(1987)044<2640:ADMSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A., P. Zhang, H. Reeves, M. Kumjian, T. Tschallener, S. Trömel, and C. Simmer, 2016: Quasi-vertical profiles—A new way to look at polarimetric radar data. J. Atmos. Oceanic Technol., 33, 551562, https://doi.org/10.1175/JTECH-D-15-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., and W. R. Cotton, 2004: A large-droplet mode and prognostic number concentration of cloud droplets in the Colorado State University Regional Atmospheric Modeling System (RAMS). Part I: Module descriptions and supercell test simulations. J. Appl. Meteor., 43, 182195, https://doi.org/10.1175/1520-0450(2004)043<0182:ALMAPN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schönhuber, M., G. Lammer, and W. L. Randeu, 2008: The 2D-video-disdrometer. Precipitation: Advances in Measurement, Estimation and Prediction. S. Michaelides, Ed., Springer, 3–31, https://doi.org/10.1007/978-3-540-77655-0_1.

    • Crossref
    • Export Citation
  • Seo, B.-C., B. Dolan, W. Krajewski, S. A. Rutledge, and W. A. Petersen, 2015: Comparison of single- and dual-polarization–based rainfall estimates using NEXRAD data for the NASA Iowa Flood Studies project. J. Hydrometeor., 16, 16581675, https://doi.org/10.1175/JHM-D-14-0169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheppard, B. E., and P. I. Joe, 1994: Comparison of raindrop size distribution measurements by a Joss–Waldvogel disdrometer, a PMS 2DG spectrometer, and a POSS Doppler radar. J. Atmos. Oceanic Technol., 11, 874887, https://doi.org/10.1175/1520-0426(1994)011<0874:CORSDM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, P. L., 2016: Sampling issues in estimating radar variables from disdrometer data. J. Atmos. Oceanic Technol., 33, 23052313, https://doi.org/10.1175/JTECH-D-16-0040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, P. L., Z. Liu, and J. Joss, 1993: A study of sampling-variability effects in raindrop size observations. J. Appl. Meteor., 32, 12591269, https://doi.org/10.1175/1520-0450(1993)032<1259:ASOSVE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, E. J., S. A. Rutledge, B. Dolan, and M. Thurai, 2015: Drop size distributions and radar observations of convective and stratiform rain over the equatorial Indian and west Pacific Oceans. J. Atmos. Sci., 72, 40914125, https://doi.org/10.1175/JAS-D-14-0206.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurai, M., V. N. Bringi, and P. T. May, 2010: CPOL radar-derived drop size distribution statistics of stratiform and convective rain for two regimes in Darwin, Australia. J. Atmos. Oceanic Technol., 27, 932942, https://doi.org/10.1175/2010JTECHA1349.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurai, M., W. A. Petersen, A. Tokay, C. Schultz, and P. Gatlin, 2011: Drop size distribution comparisons between Parsivel and 2-D video disdrometers. Adv. Geosci., 30, 39, https://doi.org/10.5194/adgeo-30-3-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurai, M., C. R. Williams, and V. N. Bringi, 2014: Examining the correlations between drop size distribution parameters using data from two side-by-side 2D-video disdrometers. Atmos. Res., 144, 95110, https://doi.org/10.1016/j.atmosres.2014.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurai, M., P. Gatlin, V. N. Bringi, W. Petersen, P. Kennedy, B. Notaros, and L. Carey, 2017: Toward completing the raindrop size spectrum: Case studies involving 2D-video disdrometer, droplet spectrometer, and polarimetric radar measurements. J. Appl. Meteor. Climatol., 56, 877896, https://doi.org/10.1175/JAMC-D-16-0304.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., and D. A. Short, 1996: Evidence from tropical rain drop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteor., 35, 355371, https://doi.org/10.1175/1520-0450(1996)035<0355:EFTRSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., D. A. Short, C. R. Williams, W. L. Ecklund, and K. S. Gage, 1999: Tropical rainfall associated with convective and stratiform clouds: Intercomparison of disdrometer and profiler measurements. J. Appl. Meteor., 38, 302320, https://doi.org/10.1175/1520-0450(1999)038<0302:TRAWCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., A. Kruger, and W. Krajewski, 2001: Comparison of drop size distribution measurements by impact and optical disdrometers. J. Appl. Meteor., 40, 20832097, https://doi.org/10.1175/1520-0450(2001)040<2083:CODSDM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., L. P. D’Adderio, D. B. Wolff, and W. A. Petersen, 2016: A field study of pixel-scale variability of raindrop size distribution in the mid-Atlantic region. J. Hydrometeor., 17, 18551868, https://doi.org/10.1175/JHM-D-15-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uijlenhoet, R., M. Steiner, and J. A. Smith, 2003: Variability of raindrop size distributions in a squall line and implications for radar rainfall estimation. J. Hydrometeor., 4, 4361, https://doi.org/10.1175/1525-7541(2003)004<0043:VORSDI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22, 17641775, https://doi.org/10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., and D. Atlas, 2007: Microphysics of raindrop size spectra: Tropical continental and maritime storms. J. Appl. Meteor. Climatol., 46, 17771791, https://doi.org/10.1175/2007JAMC1649.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, C. R., A. Kruger, K. S. Gage, A. Tokay, R. Cifelli, W. F. Krajewski, and C. Kummerow, 2000: Comparison of simultaneous rain drop size distributions estimated from two surface disdrometers and a UHF profiler. Geophys. Res. Lett., 27, 17631766, https://doi.org/10.1029/1999GL011100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, C. R., and Coauthors, 2014: Describing the shape of raindrop size distributions using uncorrelated raindrop mass spectrum parameters. J. Appl. Meteor. Climatol., 53, 12821296, https://doi.org/10.1175/JAMC-D-13-076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willis, P. T., 1984: Functional fits to some observed drop size distributions and parameterization of rain. J. Atmos. Sci., 41, 16481661, https://doi.org/10.1175/1520-0469(1984)041<1648:FFTSOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze Jr., 1997: Measurements of raindrop size distributions over the Pacific warm pool and implications for ZR relations. J. Appl. Meteor., 36, 847867, https://doi.org/10.1175/1520-0450(1997)036<0847:MORSDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze Jr., 2002: Comment on “Partitioning tropical oceanic convective and stratiform rains by draft strength” by David Atlas et al. J. Geophys. Res., 107, 4005, https://doi.org/10.1029/2000JD000205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., D. E. Kingsmill, L. B. Nance, and M. Löffler-Mang, 2006: Observations of precipitation size and fall speed characteristics within coexisting rain and wet snow. J. Appl. Meteor. Climatol., 45, 14501464, https://doi.org/10.1175/JAM2406.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5012 2241 103
PDF Downloads 3025 608 47