Mesoscale Ascent in Nocturnal Low-Level Jets

Alan Shapiro School of Meteorology, and Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma

Search for other papers by Alan Shapiro in
Current site
Google Scholar
PubMed
Close
,
Evgeni Fedorovich School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Evgeni Fedorovich in
Current site
Google Scholar
PubMed
Close
, and
Joshua G. Gebauer School of Meteorology, and Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

Search for other papers by Joshua G. Gebauer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A theory for gentle but persistent mesoscale ascent in the lower troposphere is developed in which the vertical motion arises as an inertia–gravity wave response to the sudden decrease of turbulent mixing in a horizontally heterogeneous convective boundary layer (CBL). The zone of ascent is centered on the local maximum of a laterally varying buoyancy field (warm tongue in the CBL). The shutdown also triggers a Blackadar-type inertial oscillation and associated low-level jet (LLJ). These nocturnal motions are studied analytically using the linearized two-dimensional Boussinesq equations of motion, thermal energy, and mass conservation for an inviscid stably stratified fluid, with the initial state described by a zero-order jump model of a CBL. The vertical velocity revealed by the analytical solution increases with the amplitude of the buoyancy variation, CBL depth, and wavenumber of the buoyancy variation (larger vertical velocity for smaller-scale variations). Stable stratification in the free atmosphere has a lid effect, with a larger buoyancy frequency associated with a smaller vertical velocity. For the parameter values typical of the southern Great Plains warm season, the peak vertical velocity is ~3–10 cm s−1, with parcels rising ~0.3–1 km over the ~6–8-h duration of the ascent phase. Data from the 2015 Plains Elevated Convection at Night (PECAN) field project were used as a qualitative check on the hypothesis that the same mechanism that triggers nocturnal LLJs from CBLs can induce gentle but persistent ascent in the presence of a warm tongue.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alan Shapiro, ashapiro@ou.edu

This article is included in the Plains Elevated Convection At Night (PECAN) Special Collection.

Abstract

A theory for gentle but persistent mesoscale ascent in the lower troposphere is developed in which the vertical motion arises as an inertia–gravity wave response to the sudden decrease of turbulent mixing in a horizontally heterogeneous convective boundary layer (CBL). The zone of ascent is centered on the local maximum of a laterally varying buoyancy field (warm tongue in the CBL). The shutdown also triggers a Blackadar-type inertial oscillation and associated low-level jet (LLJ). These nocturnal motions are studied analytically using the linearized two-dimensional Boussinesq equations of motion, thermal energy, and mass conservation for an inviscid stably stratified fluid, with the initial state described by a zero-order jump model of a CBL. The vertical velocity revealed by the analytical solution increases with the amplitude of the buoyancy variation, CBL depth, and wavenumber of the buoyancy variation (larger vertical velocity for smaller-scale variations). Stable stratification in the free atmosphere has a lid effect, with a larger buoyancy frequency associated with a smaller vertical velocity. For the parameter values typical of the southern Great Plains warm season, the peak vertical velocity is ~3–10 cm s−1, with parcels rising ~0.3–1 km over the ~6–8-h duration of the ascent phase. Data from the 2015 Plains Elevated Convection at Night (PECAN) field project were used as a qualitative check on the hypothesis that the same mechanism that triggers nocturnal LLJs from CBLs can induce gentle but persistent ascent in the presence of a warm tongue.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alan Shapiro, ashapiro@ou.edu

This article is included in the Plains Elevated Convection At Night (PECAN) Special Collection.

Save
  • Abramowitz, M., and I. A. Stegun, Eds., 1964: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards, 1046 pp.

  • Acevedo, O. C., and D. R. Fitzjarrald, 2001: The early evening surface-layer transition: Temporal and spatial variability. J. Atmos. Sci., 58, 26502667, https://doi.org/10.1175/1520-0469(2001)058<2650:TEESLT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arritt, R. W., T. D. Rink, M. Segal, D. P. Todey, C. A. Clark, M. J. Mitchell, and K. M. Labas, 1997: The Great Plains low-level jet during the warm season of 1993. Mon. Wea. Rev., 125, 21762192, https://doi.org/10.1175/1520-0493(1997)125<2176:TGPLLJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arya, S. P. S., 1977: Suggested revisions to certain boundary layer parameterization schemes used in atmospheric circulation models. Mon. Wea. Rev., 105, 215227, https://doi.org/10.1175/1520-0493(1977)105<0215:SRTCBL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Astling, E. G., J. Paegle, E. Miller, and C. J. O’Brien, 1985: Boundary layer control of nocturnal convection associated with a synoptic scale system. Mon. Wea. Rev., 113, 540552, https://doi.org/10.1175/1520-0493(1985)113<0540:BLCONC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Augustine, J. A., and F. Caracena, 1994: Lower tropospheric precursors to nocturnal MCS development over the central United States. Wea. Forecasting, 9, 116135, https://doi.org/10.1175/1520-0434(1994)009<0116:LTPTNM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baas, P., F. C. Bosveld, H. Klein Baltink, and A. A. M. Holtslag, 2009: A climatology of nocturnal low-level jets at Cabauw. J. Appl. Meteor. Climatol., 48, 16271642, https://doi.org/10.1175/2009JAMC1965.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1957: Boundary-layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc., 38, 283290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1959: Final report on study of forecasting low-level wind gradients. AFCRC Contract AF19(604)-2059, Pennsylvania State University, 96 pp.

  • Bleeker, W., and M. J. Andre, 1951: On the diurnal variation of precipitation, particularly over central U. S. A., and its relation to large-scale orographic circulation systems. Quart. J. Roy. Meteor. Soc., 77, 260271, https://doi.org/10.1002/qj.49707733211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonner, W. D., 1966: Case study of thunderstorm activity in relation to the low-level jet. Mon. Wea. Rev., 94, 167178, https://doi.org/10.1175/1520-0493(1966)094<0167:CSOTAI>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonner, W. D., 1968: Climatology of the low-level jet. Mon. Wea. Rev., 96, 833850, https://doi.org/10.1175/1520-0493(1968)096<0833:COTLLJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonner, W. D., S. Esbensen, and R. Greenberg, 1968: Kinematics of the low-level jet. J. Appl. Meteor., 7, 339347, https://doi.org/10.1175/1520-0450(1968)007<0339:KOTLLJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buajitti, K., and A. K. Blackadar, 1957: Theoretical studies of diurnal wind-structure variations in the planetary boundary layer. Quart. J. Roy. Meteor. Soc., 83, 486500, https://doi.org/10.1002/qj.49708335804.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., and J. D. Tuttle, 2008: Rainfall occurrence in the U.S. warm season: The diurnal cycle. J. Climate, 21, 41324146, https://doi.org/10.1175/2008JCLI2275.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., J. W. Conway, N. A. Crook, and M. W. Moncrieff, 1990: The generation and propagation of a nocturnal squall line. Part I: Observations and implications for mesoscale predictability. Mon. Wea. Rev., 118, 2649, https://doi.org/10.1175/1520-0493(1990)118<0026:TGAPOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., J. D. Tuttle, D. A. Ahijevych, and S. B. Trier, 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59, 20332056, https://doi.org/10.1175/1520-0469(2002)059<2033:IOPAWW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charba, J., 1974: Application of gravity current model to analysis of squall-line gust front. Mon. Wea. Rev., 102, 140156, https://doi.org/10.1175/1520-0493(1974)102<0140:AOGCMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, R., and L. Tomassini, 2015: The role of moisture in summertime low-level jet formation and associated rainfall over the East Asian monsoon region. J. Atmos. Sci., 72, 38713890, https://doi.org/10.1175/JAS-D-15-0064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., W. A. Gallus, and T. Chen, 2007: Comparison of the diurnal precipitation cycle in convection-resolving and non-convection-resolving mesoscale models. Mon. Wea. Rev., 135, 34563473, https://doi.org/10.1175/MWR3467.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coleman, T. A., and K. R. Knupp, 2011: Radiometer and profiler analysis of the effects of a bore and solitary wave on the stability of the nocturnal boundary layer. Mon. Wea. Rev., 139, 211223, https://doi.org/10.1175/2010MWR3376.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crysler, K. A., R. A. Maddox, L. R. Hoxit, and B. M. Muller, 1982: Diurnal distribution of very heavy precipitation over the central and eastern United States. Natl. Wea. Dig., 7 (1), 3337.

    • Search Google Scholar
    • Export Citation
  • Dai, A., F. Giorgi, and K. E. Trenberth, 1999: Observed and model-simulated diurnal cycles of precipitation over the contiguous United States. J. Geophys. Res., 104, 63776402, https://doi.org/10.1029/98JD02720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., K. W. Manning, R. E. Carbone, S. B. Trier, and J. D. Tuttle, 2003: Coherence of warm-season continental rainfall in numerical weather prediction models. Mon. Wea. Rev., 131, 26672679, https://doi.org/10.1175/1520-0493(2003)131<2667:COWCRI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doetsch, G., 1961: Guide to the Applications of Laplace Transforms. Van Nostrand, 255 pp.

  • Drobinski, P., and T. Dubos, 2009: Linear breeze scaling: From large-scale land/sea breezes to mesoscale inland breezes. Quart. J. Roy. Meteor. Soc., 135, 17661775, https://doi.org/10.1002/qj.496.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., and R. Rotunno, 2014: A simple analytical model of the nocturnal low-level jet over the Great Plains of the United States. J. Atmos. Sci., 71, 36743683, https://doi.org/10.1175/JAS-D-14-0060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., and P. J. Robinson, 1985: The diurnal variation of thunderstorm activity in the United States. J. Climate Appl. Meteor., 24, 10481058, https://doi.org/10.1175/1520-0450(1985)024<1048:TDVOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Erdélyi, A., W. Magnus, F. Oberhettinger, and F. G. Tricomi, 1954: Tables of Integral Transforms. Vol. 1, McGraw-Hill, 391 pp.

  • Fedorovich, E., 1995: Modeling the atmospheric convective boundary layer within a zero-order jump approach: An extended theoretical framework. J. Appl. Meteor., 34, 19161928, https://doi.org/10.1175/1520-0450(1995)034<1916:MTACBL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fedorovich, E., J. A. Gibbs, and A. Shapiro, 2017: Numerical study of nocturnal low-level jets over gently sloping terrain. J. Atmos. Sci., 74, 28132833, https://doi.org/10.1175/JAS-D-17-0013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., G. L. Mullendore, and S.-H. Kim, 2006: Discrete propagation in numerically simulated nocturnal squall lines. Mon. Wea. Rev., 134, 37353752, https://doi.org/10.1175/MWR3268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • French, A. J., and M. D. Parker, 2010: The response of simulated nocturnal convective systems to a developing low-level jet. J. Atmos. Sci., 67, 33843408, https://doi.org/10.1175/2010JAS3329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., R. J. Kane, and C. R. Chelius, 1986: The contribution of mesoscale convective weather systems to the warm-season precipitation in the United States. J. Climate Appl. Meteor., 25, 13331345, https://doi.org/10.1175/1520-0450(1986)025<1333:TCOMCW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebauer, J. G., 2017: Convection initiation by heterogeneous Great Plains low-level jets. M.S. thesis, School of Meteorology, University of Oklahoma, 162 pp., https://hdl.handle.net/11244/50439.

  • Geerts, B., R. Damiani, and S. Haimov, 2006: Finescale vertical structure of a cold front as revealed by an airborne Doppler radar. Mon. Wea. Rev., 134, 251271, https://doi.org/10.1175/MWR3056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., and Coauthors, 2017: The 2015 Plains Elevated Convection at Night field project. Bull. Amer. Meteor. Soc., 98, 767786, https://doi.org/10.1175/BAMS-D-15-00257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere-Ocean Dynamics. Academic Press, 662 pp.

  • Haghi, K. R., D. B. Parsons, and A. Shapiro, 2017: Bores observed during IHOP_2002: The relationship of bores to the nocturnal environment. Mon. Wea. Rev., 145, 39293946, https://doi.org/10.1175/MWR-D-16-0415.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hane, C., C. Ziegler, and H. B. Bluestein, 1993: Investigation of the dryline and convective storms initiated along the dryline: Field experiments during COPS-91. Bull. Amer. Meteor. Soc., 74, 21332145, https://doi.org/10.1175/1520-0477(1993)074<2133:IOTDAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Y. Yao, E. S. Yarosh, J. E. Janowiak, and K. C. Mo, 1997: Influence of the Great Plains low-level jet on summertime precipitation and moisture transport over the central United States. J. Climate, 10, 481507, https://doi.org/10.1175/1520-0442(1997)010<0481:IOTGPL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoecker, W. H., 1963: Three southerly low-level jet systems delineated by the Weather Bureau special pibal network of 1961. Mon. Wea. Rev., 91, 573582, https://doi.org/10.1175/1520-0493(1963)091<0573:TSLJSD>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1967: The diurnal boundary layer wind oscillation above sloping terrain. Tellus, 19, 199205, https://doi.org/10.1111/j.2153-3490.1967.tb01473.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jirak, I. L., and W. R. Cotton, 2007: Observational analysis of the predictability of mesoscale convective systems. Wea. Forecasting, 22, 813838, https://doi.org/10.1175/WAF1012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karyampudi, V. M., S. E. Koch, C. Chen, J. W. Rottman, and M. L. Kaplan, 1995: The influence of the Rocky Mountains on the 13–14 April 1986 severe weather outbreak. Part II: Evolution of a prefrontal bore and its role in triggering a squall line. Mon. Wea. Rev., 123, 14231446, https://doi.org/10.1175/1520-0493(1995)123<1423:TIOTRM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kincer, J. B., 1916: Daytime and nighttime precipitation and their economic significance. Mon. Wea. Rev., 44, 628633, https://doi.org/10.1175/1520-0493(1916)44<628:DANPAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, S. E., and W. L. Clark, 1999: A nonclassical cold front observed during COPS-91: Frontal structure and the process of severe storm initiation. J. Atmos. Sci., 56, 28622890, https://doi.org/10.1175/1520-0469(1999)056<2862:ANCFOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, S. E., R. E. Golus, and P. B. Dorian, 1988: A mesoscale gravity wave event observed during CCOPE. Part II: Interactions between mesoscale convective systems and the antecedent waves. Mon. Wea. Rev., 116, 25452569, https://doi.org/10.1175/1520-0493(1988)116<2545:AMGWEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, M.-I., S. D. Schubert, M. J. Suarez, J.-K. E. Schemm, H.-L. Pan, and S.-H. Yoo, 2008: Role of convection triggers in the simulation of the diurnal cycle of precipitation over the United States Great Plains in a general circulation model. J. Geophys. Res., 113, D02111, https://doi.org/10.1029/2007JD008984.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., G. N. Kiladis, C. S. Vera, A. C. Saulo, and L. M. V. Carvalho, 2004: Subseasonal variations of rainfall in South America in the vicinity of the low-level jet east of the Andes and comparison to those in the South Atlantic Convergence Zone. J. Climate, 17, 38293842, https://doi.org/10.1175/1520-0442(2004)017<3829:SVORIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., 2007: Mesoscale Dynamics. Cambridge University Press, 630 pp.

    • Crossref
    • Export Citation
  • Lynn, B. H., W.-K. Tao, and P. J. Wetzel, 1998: A study of landscape-generated deep moist convection. Mon. Wea. Rev., 126, 928942, https://doi.org/10.1175/1520-0493(1998)126<0928:ASOLGD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1983: Large-scale meteorological conditions associated with midlatitude mesoscale convective complexes. Mon. Wea. Rev., 111, 14751493, https://doi.org/10.1175/1520-0493(1983)111<1475:LSMCAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., and G. K. Grice, 1983: Synoptic characteristics of heavy rainfall events in South Texas. Natl. Wea. Dig., 8 (3), 816.

  • Maddox, R. A., C. F. Chappell, and L. R. Hoxit, 1979: Synoptic and meso-α scale aspects of flash flood events. Bull. Amer. Meteor. Soc., 60, 115123, https://doi.org/10.1175/1520-0477-60.2.115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., K. W. Howard, D. L. Bartels, and D. M. Rodgers, 1986: Mesoscale convective complexes in the middle latitudes. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 390–413.

    • Crossref
    • Export Citation
  • Mahfouf, J.-F., E. Richard, and P. Mascart, 1987: The influence of soil and vegetation on the development of mesoscale circulations. J. Climate Appl. Meteor., 26, 14831495, https://doi.org/10.1175/1520-0450(1987)026<1483:TIOSAV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahoney, W. P., 1988: Gust front characteristics and the kinematics associated with interacting thunderstorm outflows. Mon. Wea. Rev., 116, 14741491, https://doi.org/10.1175/1520-0493(1988)116<1474:GFCATK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., J. Sun, D. Vickers, J. I. MacPherson, J. R. Pederson, and R. L. Desjardins, 1994: Observations of fluxes and inland breezes over a heterogeneous surface. J. Atmos. Sci., 51, 24842499, https://doi.org/10.1175/1520-0469(1994)051<2484:OOFAIB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsham, J. H., and D. J. Parker, 2006: Secondary initiation of multiple bands of cumulonimbus over southern Britain. II: Dynamics of secondary initiation. Quart. J. Roy. Meteor. Soc., 132, 10531072, https://doi.org/10.1256/qj.05.152.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsham, J. H., S. B. Trier, T. M. Weckwerth, and J. W. Wilson, 2011: Observations of elevated convection initiation leading to a surface-based squall line during 13 June IHOP_2002. Mon. Wea. Rev., 139, 247271, https://doi.org/10.1175/2010MWR3422.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPherson, R. A., 2007: A review of vegetation-atmosphere interactions and their influences on mesoscale phenomena. Prog. Phys. Geogr., 31, 261285, https://doi.org/10.1177/0309133307079055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Means, L. L., 1952: On thunderstorm forecasting in the central United States. Mon. Wea. Rev., 80, 165189, https://doi.org/10.1175/1520-0493(1952)080<0165:OTFITC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, M. J., R. W. Arritt, and K. Labas, 1995: A climatology of the warm season Great Plains low-level jet using wind profiler observations. Wea. Forecasting, 10, 576591, https://doi.org/10.1175/1520-0434(1995)010<0576:ACOTWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molod, A., H. Salmun, and M. Dempsey, 2015: Estimating planetary boundary layer heights from NOAA Profiler network wind profiler data. J. Atmos. Oceanic Technol., 32, 15451561, https://doi.org/10.1175/JTECH-D-14-00155.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monaghan, A. J., D. L. Rife, J. O. Pinto, C. A. Davis, and J. R. Hannan, 2010: Global precipitation extremes associated with diurnally varying low-level jets. J. Climate, 23, 50655084, https://doi.org/10.1175/2010JCLI3515.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orville, R. E., and R. W. Henderson, 1986: Global distribution of midnight lightning – September 1977 to August 1978. Mon. Wea. Rev., 114, 26402653, https://doi.org/10.1175/1520-0493(1986)114<2640:GDOMLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paegle, J., 1978: A linearized analysis of diurnal boundary layer convergence over the topography of the United States. Mon. Wea. Rev., 106, 492502, https://doi.org/10.1175/1520-0493(1978)106<0492:ALAODB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paegle, J., and D. W. McLawhorn, 1973: Correlation of nocturnal thunderstorms and boundary-layer convergence. Mon. Wea. Rev., 101, 877883, https://doi.org/10.1175/1520-0493(1973)101<0877:CONTAB>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paegle, J., and G. E. Rasch, 1973: Three-dimensional characteristics of diurnally varying boundary-layer flows. Mon. Wea. Rev., 101, 746756, https://doi.org/10.1175/1520-0493(1973)101<0746:TCODVB>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pitchford, K. L., and J. London, 1962: The low-level jet as related to nocturnal thunderstorms over Midwest United States. J. Appl. Meteor., 1, 4347, https://doi.org/10.1175/1520-0450(1962)001<0043:TLLJAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pu, B., and R. E. Dickinson, 2014: Diurnal spatial variability of Great Plains summer precipitation related to the dynamics of the low-level jet. J. Atmos. Sci., 71, 18071817, https://doi.org/10.1175/JAS-D-13-0243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reif, D. W., and H. B. Bluestein, 2017: A 20-year climatology of nocturnal convection initiation over the central and southern Great Plains during the warm season. Mon. Wea. Rev., 145, 16151639, https://doi.org/10.1175/MWR-D-16-0340.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Revathy, K., S. R. Prabhakaran Nair, and B. V. Krishna Murthy, 1996: Deduction of temperature profile from MST radar observations of vertical wind. Geophys. Res. Lett., 23, 285288, https://doi.org/10.1029/96GL00086.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riley, G. T., M. G. Landin, and L. F. Bosart, 1987: The diurnal variability of precipitation across the central Rockies and adjacent Great Plains. Mon. Wea. Rev., 115, 11611172, https://doi.org/10.1175/1520-0493(1987)115<1161:TDVOPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salio, P., M. Nicolini, and E. J. Zipser, 2007: Mesoscale convective systems over southeastern South America and their relationship with the South American low-level jet. Mon. Wea. Rev., 135, 12901309, https://doi.org/10.1175/MWR3305.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sawyer, V., and Z. Li, 2013: Detection, variations and intercomparison of the planetary boundary layer depth from radiosonde, lidar and infrared spectrometer. Atmos. Environ., 79, 518528, https://doi.org/10.1016/j.atmosenv.2013.07.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmid, P., and D. Niyogi, 2012: A method for estimating planetary boundary layer heights and its application over the ARM Southern Great Plains site. J. Atmos. Oceanic Technol., 29, 316322, https://doi.org/10.1175/JTECH-D-11-00118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Segal, M., and R. W. Arritt, 1992: Nonclassical mesoscale circulations caused by surface sensible heat-flux gradients. Bull. Amer. Meteor. Soc., 73, 15931604, https://doi.org/10.1175/1520-0477(1992)073<1593:NMCCBS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, A., and E. Fedorovich, 2010: Analytical description of a nocturnal low-level jet. Quart. J. Roy. Meteor. Soc., 136, 12551262, https://doi.org/10.1002/qj.628.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, A., E. Fedorovich, and S. Rahimi, 2016: A unified theory for the Great Plains nocturnal low-level jet. J. Atmos. Sci., 73, 30373057, https://doi.org/10.1175/JAS-D-15-0307.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, H., W. Lin, Y. Lin, A. B. Wolf, R. Neggers, L. J. Donner, A. D. Del Genio, and Y. Liu, 2013: Evaluation of precipitation simulated by seven SCMs against the ARM observations at the SGP site. J. Climate, 26, 54675492, https://doi.org/10.1175/JCLI-D-12-00263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, J., K. Liao, R. L. Coulter, and B. M. Lesht, 2005: Climatology of the low-level jet at the Southern Great Plains Atmospheric Boundary Layer Experiments site. J. Appl. Meteor., 44, 15931606, https://doi.org/10.1175/JAM2294.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., 1996: Importance of low-level jets to climate: A review. J. Climate, 9, 16981711, https://doi.org/10.1175/1520-0442(1996)009<1698:IOLLJT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, W.-Y., and Y. Ogura, 1979: Boundary-layer forcing as a possible trigger to a squall-line formation. J. Atmos. Sci., 36, 235254, https://doi.org/10.1175/1520-0469(1979)036<0235:BLFAAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Surcel, M., M. Berenguer, and I. Zawadzki, 2010: The diurnal cycle of precipitation from continental radar mosaics and numerical weather prediction models. Part I: Methodology and seasonal comparison. Mon. Wea. Rev., 138, 30843106, https://doi.org/10.1175/2010MWR3125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, A. J., and T. H. Guymer, 1977: The nocturnal jet. Quart. J. Roy. Meteor. Soc., 103, 633653, https://doi.org/10.1002/qj.49710343809.

  • Trier, S. B., and D. B. Parsons, 1993: Evolution of environmental conditions preceding the development of a nocturnal mesoscale convective complex. Mon. Wea. Rev., 121, 10781098, https://doi.org/10.1175/1520-0493(1993)121<1078:EOECPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., C. A. Davis, D. A. Ahijevych, M. L. Weisman, and G. H. Bryan, 2006: Mechanisms supporting long-lived episodes of propagating nocturnal convection within a 7-day WRF model simulation. J. Atmos. Sci., 63, 24372461, https://doi.org/10.1175/JAS3768.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., C. A. Davis, and R. E. Carbone, 2014: Mechanisms governing the persistence and diurnal cycle of a heavy rainfall corridor. J. Atmos. Sci., 71, 41024126, https://doi.org/10.1175/JAS-D-14-0134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., J. W. Wilson, D. A. Ahijevych, and R. A. Sobash, 2017: Mesoscale vertical motions near nocturnal convection initiation in PECAN. Mon. Wea. Rev., 145, 29192941, https://doi.org/10.1175/MWR-D-17-0005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsuda, T., T. E. VanZandt, M. Mizumoto, S. Kato, and S. Fukao, 1991: Spectral analysis of temperature and Brunt-Väisälä frequency fluctuations observed by radiosondes. J. Geophys. Res., 96, 17 26517 278, https://doi.org/10.1029/91JD01944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuttle, J., and C. A. Davis, 2006: Corridors of warm-season precipitation in the central United States. Mon. Wea. Rev., 134, 22972317, https://doi.org/10.1175/MWR3188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uccelini, L. W., 1975: A case study of apparent gravity wave initiation of severe convective storms. Mon. Wea. Rev., 103, 497513, https://doi.org/10.1175/1520-0493(1975)103<0497:ACSOAG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van de Wiel, B. J. H., A. F. Moene, G. J. Steeneveld, P. Bass, F. C. Bosveld, and A. A. M. Holtslag, 2010: A conceptual view on inertial oscillations and nocturnal low-level jets. J. Atmos. Sci., 67, 26792689, https://doi.org/10.1175/2010JAS3289.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Ulden, A. P., and A. A. M. Holtslag, 1985: Estimation of atmospheric boundary layer parameters for diffusion applications. J. Climate Appl. Meteor., 24, 11961207, https://doi.org/10.1175/1520-0450(1985)024<1196:EOABLP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velasco, I., and J. M. Fritsch, 1987: Mesoscale convective complexes in the Americas. J. Geophys. Res., 92, 95919613, https://doi.org/10.1029/JD092iD08p09591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vermeesch, K., 2016: S-Pol site UMBC ceilometer (version 2). NCAR–UCAR Earth Observing Laboratory, accessed 25 April 2017, https://doi.org/10.5065/D6V122VT.

    • Crossref
    • Export Citation
  • Wallace, J. M., 1975: Diurnal variations in precipitation and thunderstorm frequency over the conterminous United States. Mon. Wea. Rev., 103, 406419, https://doi.org/10.1175/1520-0493(1975)103<0406:DVIPAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walters, C. K., and J. A. Winkler, 2001: Airflow configurations of warm season southerly low-level wind maxima in the Great Plains. Part I: Spatial and temporal characteristics and relationship to convection. Wea. Forecasting, 16, 513530, https://doi.org/10.1175/1520-0434(2001)016<0513:ACOWSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D., Y. Zhang, and A. Huang, 2013: Climatic features of the south-westerly low-level jet over southeast China and its association with precipitation over east China. Asia-Pac. J. Atmos. Sci., 49, 259270, https://doi.org/10.1007/s13143-013-0025-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and R. M. Wakimoto, 1992: The initiation and organization of convective cells atop a cold-air outflow boundary. Mon. Wea. Rev., 120, 21692187, https://doi.org/10.1175/1520-0493(1992)120,2169:TIAOOC.2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and D. B. Parsons, 2006: A review of convection initiation and motivation for IHOP_2002. Mon. Wea. Rev., 134, 522, https://doi.org/10.1175/MWR3067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., H. V. Murphey, C. Flamant, J. Goldstein, and C. R. Pettet, 2008: An observational study of convection initiation on 12 June 2002 during IHOP_2002. Mon. Wea. Rev., 136, 22832304, https://doi.org/10.1175/2007MWR2128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weiss, C. C., and H. B. Bluestein, 2002: Airborne pseudo-dual-Doppler analysis of a dryline-outflow boundary intersection. Mon. Wea. Rev., 130, 12071226, https://doi.org/10.1175/1520-0493(2002)130<1207:APDDAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., X. Bian, and S. Zhong, 1997: Low-level jet climatology from enhanced rawinsonde observations at a site in the southern Great Plains. J. Appl. Meteor., 36, 13631376, https://doi.org/10.1175/1520-0450(1997)036<1363:LLJCFE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and W. E. Schreiber, 1986: Initiation of convective storms at radar-observed boundary-layer convergence lines. Mon. Wea. Rev., 114, 25162536, https://doi.org/10.1175/1520-0493(1986)114<2516:IOCSAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and R. D. Roberts, 2006: Summary of convective storm initiation and evolution during IHOP: Observational and modeling perspective. Mon. Wea. Rev., 134, 2347, https://doi.org/10.1175/MWR3069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wingo, S. M., and K. R. Knupp, 2015: Multi-platform observations characterizing the afternoon-to-evening transition of the planetary boundary layer in northern Alabama, USA. Bound.-Layer Meteor., 155, 2953, https://doi.org/10.1007/s10546-014-9988-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, W., J. Xu, Y. Wu, H. Chen, and J. Bian, 2010: Statistics of gravity wave spectra in the troposphere and lower stratosphere over Beijing. Sci. China Earth Sci., 53, 141149, https://doi.org/10.1007/s11430-010-0002-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., and E. N. Rasmussen, 1998: The initiation of moist convection at the dryline: Forecasting issues from a case study perspective. Wea. Forecasting, 13, 11061131, https://doi.org/10.1175/1520-0434(1998)013<1106:TIOMCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4542 3377 252
PDF Downloads 746 212 17