• Ahmed, F., and C. Schumacher, 2015: Convective and stratiform components of the precipitation-moisture relationship. Geophys. Res. Lett., 42, 10 45310 462, https://doi.org/10.1002/2015GL066957.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ahmed, F., and C. Schumacher, 2017: Geographical differences in the tropical precipitation-moisture relationship and rain intensity onset. Geophys. Res. Lett., 44, 11141122, https://doi.org/10.1002/2016GL071980.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, T. L., and B. E. Mapes, 2017: The late spring Caribbean rain-belt: Climatology and dynamics. Int. J. Climatol., 37, 49814993, https://doi.org/10.1002/joc.5136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, part I. J. Atmos. Sci., 31, 674701, https://doi.org/10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asai, T., and A. Kasahara, 1967: A theoretical study of the compensating downward motions associated with cumulus clouds. J. Atmos. Sci., 24, 487496, https://doi.org/10.1175/1520-0469(1967)024<0487:ATSOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Austin, J. M., 1948: A note on cumulus growth in a nonsaturated environment. J. Meteor., 5, 103107, https://doi.org/10.1175/1520-0469(1948)005<0103:ANOCGI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Back, L. E., and C. S. Bretherton, 2009: On the relationship between SST gradients, boundary layer winds, and convergence over the tropical oceans. J. Climate, 22, 41824196, https://doi.org/10.1175/2009JCLI2392.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bechtold, P., E. Bazile, F. Guichard, P. Mascart, and E. Richard, 2001: A mass-flux convection scheme for regional and global models. Quart. J. Roy. Meteor. Soc., 127, 869886, https://doi.org/10.1002/qj.49712757309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1975: Parametric interpretation of trade-wind cumulus budget studies. J. Atmos. Sci., 32, 19341945, https://doi.org/10.1175/1520-0469(1975)032<1934:PIOTWC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., J. H. Ball, A. C. M. Beljaars, M. J. Miller, and P. A. Viterbo, 1996: The land surface-atmosphere interaction: A review based on observational and global modeling perspectives. J. Geophys. Res., 101, 72097225, https://doi.org/10.1029/95JD02135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. E. Peters, and L. E. Back, 2004a: Relationships between water vapor path and precipitation over the tropical oceans. J. Climate, 17, 15171528, https://doi.org/10.1175/1520-0442(2004)017<1517:RBWVPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., J. R. McCaa, and H. Grenier, 2004b: A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part I: Description and 1D results. Mon. Wea. Rev., 132, 864882, https://doi.org/10.1175/1520-0493(2004)132<0864:ANPFSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaboureau, J. P., F. Guichard, J. L. Redelsperger, and J. P. Lafore, 2004: The role of stability and moisture in the diurnal cycle of convection overland. Quart. J. Roy. Meteor. Soc., 130, 31053117, https://doi.org/10.1256/qj.03.132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawe, J. T., and P. H. Austin, 2011: The influence of the cloud shell on tracer budget measurements of LES cloud entrainment. J. Atmos. Sci., 68, 29092920, https://doi.org/10.1175/2011JAS3658.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., 2012: Representing the sensitivity of convective cloud systems to tropospheric humidity in general circulation models. Surv. Geophys., 33, 637656, https://doi.org/10.1007/s10712-011-9148-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., and J. B. Wu, 2010: The role of entrainment in the diurnal cycle of continental convection. J. Climate, 23, 27222738, https://doi.org/10.1175/2009JCLI3340.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., Y. H. Chen, D. Kim, and M. S. Yao, 2012: The MJO transition from shallow to deep convection in CloudSat/CALIPSO data and GISS GCM simulations. J. Climate, 25, 37553770, https://doi.org/10.1175/JCLI-D-11-00384.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Derbyshire, S. H., I. Beau, P. Bechtold, J. Y. Grandpeix, J. M. Piriou, J. L. Redelsperger, and P. M. M. Soares, 2004: Sensitivity of moist convection to environmental humidity. Quart. J. Roy. Meteor. Soc., 130, 30553079, https://doi.org/10.1256/qj.03.130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Roode, S. R., A. P. Siebesma, H. J. J. Jonker, and Y. de Voogd, 2012: Parameterization of the vertical velocity equation for shallow cumulus clouds. Mon. Wea. Rev., 140, 24242436, https://doi.org/10.1175/MWR-D-11-00277.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Rooy, W. C., and A. P. Siebesma, 2010: Analytical expressions for entrainment and detrainment in cumulus convection. Quart. J. Roy. Meteor. Soc., 136, 12161227, https://doi.org/10.1002/qj.640.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Rooy, W. C., and Coauthors, 2013: Entrainment and detrainment in cumulus convection: An overview. Quart. J. Roy. Meteor. Soc., 139, 119, https://doi.org/10.1002/qj.1959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., and E. N. Rasmussen, 1994: The effect of neglecting the virtual temperature correction on CAPE calculations. Wea. Forecasting, 9, 625629, https://doi.org/10.1175/1520-0434(1994)009<0625:TEONTV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emori, S., 1998: The interaction of cumulus convection with soil moisture distribution: An idealized simulation. J. Geophys. Res., 103, 88738884, https://doi.org/10.1029/98JD00426.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., and R. A. Houze Jr., 1989: One-dimensional time-dependent modeling of GATE cumulonimbus convection. J. Atmos. Sci., 46, 330352, https://doi.org/10.1175/1520-0469(1989)046<0330:ODTDMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, D., 2001: Estimation of entrainment rate in simple models of convective clouds. Quart. J. Roy. Meteor. Soc., 127, 5372, https://doi.org/10.1002/qj.49712757104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hannah, W. M., 2017: Entrainment versus dilution in tropical deep convection. J. Atmos. Sci., 74, 37253747, https://doi.org/10.1175/JAS-D-16-0169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hannah, W. M., and E. D. Maloney, 2011: The role of moisture–convection feedbacks in simulating the Madden–Julian oscillation. J. Climate, 24, 27542770, https://doi.org/10.1175/2011JCLI3803.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hannah, W. M., B. E. Mapes, and G. S. Elsaesser, 2016: A Lagrangian view of moisture dynamics during DYNAMO. J. Atmos. Sci., 73, 19671985, https://doi.org/10.1175/JAS-D-15-0243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., and J. D. Neelin, 2007: The convective cold top and quasi equilibrium. J. Atmos. Sci., 64, 14671487, https://doi.org/10.1175/JAS3907.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., and J. D. Neelin, 2009: Moisture vertical structure, column water vapor, and tropical deep convection. J. Atmos. Sci., 66, 16651683, https://doi.org/10.1175/2008JAS2806.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houghton, H. G., and H. E. Cramer, 1951: A theory of entrainment in convective currents. J. Meteor., 8, 95102, https://doi.org/10.1175/1520-0469(1951)008<0095:ATOEIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1997: Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc., 78, 21792196, https://doi.org/10.1175/1520-0477(1997)078<2179:SPIROC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, https://doi.org/10.1029/2004RG000150.

  • Houze, R. A., Jr., 2012: Orographic effects on precipitating clouds. Rev. Geophys., 50, RG1001, https://doi.org/10.1029/2011RG000365.

  • Houze, R. A., Jr., K. L. Rasmussen, M. D. Zuluaga, and S. R. Brodzik, 2015: The variable nature of convection in the tropics and subtropics: A legacy of 16 years of the Tropical Rainfall Measuring Mission satellite. Rev. Geophys., 53, 9941021, https://doi.org/10.1002/2015RG000488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jakob, C., and A. P. Siebesma, 2003: A new subcloud model for mass-flux convection schemes: Influence on triggering, updraft properties, and model climate. Mon. Wea. Rev., 131, 27652778, https://doi.org/10.1175/1520-0493(2003)131<2765:ANSMFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeevanjee, N., and D. M. Romps, 2015: Effective buoyancy, inertial pressure, and the mechanical generation of boundary layer mass flux by cold pools. J. Atmos. Sci., 72, 31993213, https://doi.org/10.1175/JAS-D-14-0349.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, M. P., and A. D. Del Genio, 2006: Factors limiting convective cloud-top height at the ARM Nauru Island climate research facility. J. Climate, 19, 21052117, https://doi.org/10.1175/JCLI3722.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, https://doi.org/10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., and B. Wang, 2008: Diurnal precipitation regimes in the global tropics. J. Climate, 21, 26802696, https://doi.org/10.1175/2007JCLI2051.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kingsmill, D. E., and R. A. Houze, 1999: Thermodynamic characteristics of air flowing into and out of precipitating convection over the west Pacific warm pool. Quart. J. Roy. Meteor. Soc., 125, 12091229, https://doi.org/10.1002/qj.1999.49712555606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuang, Z. M., 2008: A moisture-stratiform instability for convectively coupled waves. J. Atmos. Sci., 65, 834854, https://doi.org/10.1175/2007JAS2444.1; Corrigendum, 65, 3011, https://doi.org/10.1175/2008JAS2844.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuang, Z. M., 2010: Linear response functions of a cumulus ensemble to temperature and moisture perturbations and implications for the dynamics of convectively coupled waves. J. Atmos. Sci., 67, 941962, https://doi.org/10.1175/2009JAS3260.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, V. V., C. Jakob, A. Protat, C. R. Williams, and P. T. May, 2015: Mass-flux characteristics of tropical cumulus clouds from wind profiler observations at Darwin, Australia. J. Atmos. Sci., 72, 18371855, https://doi.org/10.1175/JAS-D-14-0259.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, Y. H., J. D. Neelin, and C. R. Mechoso, 2017: Tropical convective transition statistics and causality in the water vapor–precipitation relation. J. Atmos. Sci., 74, 915931, https://doi.org/10.1175/JAS-D-16-0182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, V. E., 1999: The relationship between the transilient matrix and the Green's function for the advection-diffusion equation. J. Atmos. Sci., 56, 24472453, https://doi.org/10.1175/1520-0469(1999)056<2447:TRBTTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., and E. J. Zipser, 1980: Cumulonimbus vertical velocity events in GATE. Part I. Diameter, intensity and mass flux. J. Atmos. Sci., 37, 24442457, https://doi.org/10.1175/1520-0469(1980)037<2444:CVVEIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, C. C., 1999: Some bulk properties of cumulus ensembles simulated by a cloud-resolving model. Part II: Entrainment profiles. J. Atmos. Sci., 56, 37363748, https://doi.org/10.1175/1520-0469(1999)056<3736:SBPOCE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., and R. A. Houze Jr., 1995: Diabatic divergence profiles in western Pacific mesoscale convective systems. J. Atmos. Sci., 52, 18071828, https://doi.org/10.1175/1520-0469(1995)052<1807:DDPIWP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, S. T., and Coauthors, 2016: Introduction: Observations and modeling of the Green Ocean Amazon (GoAmazon2014/5). Atmos. Chem. Phys., 16, 47854797, https://doi.org/10.5194/acp-16-4785-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masunaga, H., 2012: Short-term versus climatological relationship between precipitation and tropospheric humidity. J. Climate, 25, 79837990, https://doi.org/10.1175/JCLI-D-12-00037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masunaga, H., and Z. J. Luo, 2016: Convective and large-scale mass flux profiles over tropical oceans determined from synergistic analysis of a suite of satellite observations. J. Geophys. Res. Atmos., 121, 79587974, https://doi.org/10.1002/2016JD024753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mechem, D. B., R. A. Houze Jr., and S. S. Chen, 2002: Layer inflow into precipitating convection over the western tropical Pacific. Quart. J. Roy. Meteor. Soc., 128, 19972030, https://doi.org/10.1256/003590002320603502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., 2017: An analytic description of the structure and evolution of growing deep cumulus updrafts. J. Atmos. Sci., 74, 809834, https://doi.org/10.1175/JAS-D-16-0234.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morton, B. R., G. Taylor, and J. S. Turner, 1956: Turbulent gravitational convection from maintained and instantaneous sources. Proc. Roy. Soc. London, 234A, 123, https://doi.org/10.1098/rspa.1956.0011.

    • Search Google Scholar
    • Export Citation
  • Myoung, B., and J. W. Nielsen-Gammon, 2010: Sensitivity of monthly convective precipitation to environmental conditions. J. Climate, 23, 166188, https://doi.org/10.1175/2009JCLI2792.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R. B., J. H. Richter, and M. Jochum, 2008: The impact of convection on ENSO: From a delayed oscillator to a series of events. J. Climate, 21, 59045924, https://doi.org/10.1175/2008JCLI2244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., O. Peters, J. W. B. Lin, K. Hales, and C. E. Holloway, 2008: Rethinking convective quasi-equilibrium: Observational constraints for stochastic convective schemes in climate models. Philos. Trans. Roy. Soc., 366A, 25812604, https://doi.org/10.1098/rsta.2008.0056.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., O. Peters, and K. Hales, 2009: The transition to strong convection. J. Atmos. Sci., 66, 23672384, https://doi.org/10.1175/2009JAS2962.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., and E. J. Zipser, 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16, 14561475, https://doi.org/10.1175/1520-0442-16.10.1456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pandya, R. E., and D. R. Durran, 1996: The influence of convectively generated thermal forcing on the mesoscale circulation around squall lines. J. Atmos. Sci., 53, 29242951, https://doi.org/10.1175/1520-0469(1996)053<2924:TIOCGT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, O., and J. D. Neelin, 2006: Critical phenomena in atmospheric precipitation. Nat. Phys., 2, 393396, https://doi.org/10.1038/nphys314.

  • Peters, O., J. D. Neelin, and S. W. Nesbitt, 2009: Mesoscale convective systems and critical clusters. J. Atmos. Sci., 66, 29132924, https://doi.org/10.1175/2008JAS2761.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prigent, C., F. Aires, and W. B. Rossow, 2006: Land surface microwave emissivities over the globe for a decade. Bull. Amer. Meteor. Soc., 87, 15731584, https://doi.org/10.1175/BAMS-87-11-1573.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 2000: Thermodynamic control of tropical rainfall. Quart. J. Roy. Meteor. Soc., 126, 889898, https://doi.org/10.1002/qj.49712656406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and M. M. Flores, 2016: Predicting convective rainfall over tropical oceans from environmental conditions. J. Adv. Model. Earth Syst., 8, 703718, https://doi.org/10.1002/2015MS000595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Redelsperger, J. L., D. B. Parsons, and F. Guichard, 2002: Recovery processes and factors limiting cloud-top height following the arrival of a dry intrusion observed during TOGA COARE. J. Atmos. Sci., 59, 24382457, https://doi.org/10.1175/1520-0469(2002)059<2438:RPAFLC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romps, D. M., 2010: A direct measure of entrainment. J. Atmos. Sci., 67, 19081927, https://doi.org/10.1175/2010JAS3371.1.

  • Romps, D. M., and Z. M. Kuang, 2011: A transilient matrix for moist convection. J. Atmos. Sci., 68, 20092025, https://doi.org/10.1175/2011JAS3712.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sahany, S., J. D. Neelin, K. Hales, and R. B. Neale, 2012: Temperature–moisture dependence of the deep convective transition as a constraint on entrainment in climate models. J. Atmos. Sci., 69, 13401358, https://doi.org/10.1175/JAS-D-11-0164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schiro, K. A., 2017: Thermodynamic controls on deep convection in the tropics: Observations and applications to modeling. Ph.D. dissertation, University of California, Los Angeles, 148 pp.

  • Schiro, K. A., J. D. Neelin, D. K. Adams, and B. R. Lintner, 2016: Deep convection and column water vapor over tropical land versus tropical ocean: A comparison between the Amazon and the tropical western Pacific. J. Atmos. Sci., 73, 40434063, https://doi.org/10.1175/JAS-D-16-0119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and R. A. Houze Jr., 2003: Stratiform rain in the tropics as seen by the TRMM precipitation radar. J. Climate, 16, 17391756, https://doi.org/10.1175/1520-0442(2003)016<1739:SRITTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, C., S. N. Stevenson, and C. R. Williams, 2015: Vertical motions of the tropical convective cloud spectrum over Darwin, Australia. Quart. J. Roy. Meteor. Soc., 141, 22772288, https://doi.org/10.1002/qj.2520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., 1999: Convective precursors and predictability in the tropical western Pacific. Mon. Wea. Rev., 127, 29772991, https://doi.org/10.1175/1520-0493(1999)127<2977:CPAPIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., P. Minnis, and M. McGill, 2004: Deep convective cloud-top heights and their thermodynamic control during CRYSTAL-FACE. J. Geophys. Res., 109, D20119, https://doi.org/10.1029/2004JD004811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shige, S., and C. D. Kummerow, 2016: Precipitation-top heights of heavy orographic rainfall in the Asian monsoon region. J. Atmos. Sci., 73, 30093024, https://doi.org/10.1175/JAS-D-15-0271.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., 1996: On the mass flux approach for atmospheric convection. Proc. Workshop on New Insights and Approaches to Convective Parametrization, Reading, United Kingdom, ECMWF, 25–57.

  • Siebesma, A. P., P. M. M. Soares, and J. Teixeira, 2007: A combined eddy-diffusivity mass-flux approach for the convective boundary layer. J. Atmos. Sci., 64, 12301248, https://doi.org/10.1175/JAS3888.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spracklen, D. V., S. R. Arnold, and C. M. Taylor, 2012: Observations of increased tropical rainfall preceded by air passage over forests. Nature, 489, 282285, https://doi.org/10.1038/nature11390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1993: Review of non-local mixing in turbulent atmospheres: Transilient turbulence theory. Bound.-Layer Meteor., 62, 2196, https://doi.org/10.1007/BF00705546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, Y. D., and Coauthors, 2014: Quantifying uncertainties in land-surface microwave emissivity retrievals. IEEE Trans. Geosci. Remote Sens., 52, 829840, https://doi.org/10.1109/TGRS.2013.2244214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokioka, T., K. Yamazaki, A. Kitoh, and T. Ose, 1988: The equatorial 30-60 day oscillation and the Arakawa-Schubert penetrative cumulus parameterization. J. Meteor. Soc. Japan, 66, 883901, https://doi.org/10.2151/jmsj1965.66.6_883.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tulich, S. N., and B. E. Mapes, 2010: Transient environmental sensitivities of explicitly simulated tropical convection. J. Atmos. Sci., 67, 923940, https://doi.org/10.1175/2009JAS3277.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waite, M. L., and B. Khouider, 2010: The deepening of tropical convection by congestus preconditioning. J. Atmos. Sci., 67, 26012615, https://doi.org/10.1175/2010JAS3357.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., and A. H. Sobel, 2012: Impact of imposed drying on deep convection in a cloud-resolving model. J. Geophys. Res., 117, D02112, https://doi.org/10.1029/2011JD016847.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and Coauthors, 2015: A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles. Rev. Geophys., 53, 819895, https://doi.org/10.1002/2014RG000476.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, W., and E. J. Zipser, 2012: Properties of deep convection in tropical continental, monsoon, and oceanic rainfall regimes. Geophys. Res. Lett., 39, L07802, https://doi.org/10.1029/2012GL051242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeo, K., and D. M. Romps, 2013: Measurement of convective entrainment using Lagrangian particles. J. Atmos. Sci., 70, 266277, https://doi.org/10.1175/JAS-D-12-0144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.–Ocean, 33, 407446, https://doi.org/10.1080/07055900.1995.9649539.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 1977: Mesoscale and convective-scale downdrafts as distinct components of squall-line structure. Mon. Wea. Rev., 105, 15681589, https://doi.org/10.1175/1520-0493(1977)105<1568:MACDAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 27 27 27
PDF Downloads 7 7 7

Reverse Engineering the Tropical Precipitation–Buoyancy Relationship

View More View Less
  • 1 Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California
Restricted access

Abstract

The tropical precipitation–moisture relationship, characterized by rapid increases in precipitation for modest increases in moisture, is conceptually recast in a framework relevant to plume buoyancy and conditional instability in the tropics. The working hypothesis in this framework links the rapid onset of precipitation to integrated buoyancy in the lower troposphere. An analytical expression that relates the buoyancy of an entraining plume to the vertical thermodynamic structure is derived. The natural variables in this framework are saturation and subsaturation equivalent potential temperatures, which capture the leading-order temperature and moisture variations, respectively. The use of layer averages simplifies the analytical and subsequent numerical treatment. Three distinct layers, the boundary layer, the lower free troposphere, and the midtroposphere, adequately capture the vertical variations in the thermodynamic structure. The influence of each environmental layer on the plume is assumed to occur via lateral entrainment, corresponding to an assumed mass-flux profile. The fractional contribution of each layer to the midlevel plume buoyancy (i.e., the layer weight) is estimated from TRMM 3B42 precipitation and ERA-Interim thermodynamic profiles. The layer weights are used to “reverse engineer” a deep-inflow mass-flux profile that is nominally descriptive of the tropical atmosphere through the onset of deep convection. The layer weights—which are nearly the same for each of the layers—constitute an environmental influence function and are also used to compute a free-tropospheric integrated buoyancy measure. This measure is shown to be an effective predictor of onset in conditionally averaged precipitation across the global tropics—over both land and ocean.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-17-0333.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Fiaz Ahmed, fiaz@ucla.edu

This article is included in the Process-Oriented Model Diagnostics Special Collection.

Abstract

The tropical precipitation–moisture relationship, characterized by rapid increases in precipitation for modest increases in moisture, is conceptually recast in a framework relevant to plume buoyancy and conditional instability in the tropics. The working hypothesis in this framework links the rapid onset of precipitation to integrated buoyancy in the lower troposphere. An analytical expression that relates the buoyancy of an entraining plume to the vertical thermodynamic structure is derived. The natural variables in this framework are saturation and subsaturation equivalent potential temperatures, which capture the leading-order temperature and moisture variations, respectively. The use of layer averages simplifies the analytical and subsequent numerical treatment. Three distinct layers, the boundary layer, the lower free troposphere, and the midtroposphere, adequately capture the vertical variations in the thermodynamic structure. The influence of each environmental layer on the plume is assumed to occur via lateral entrainment, corresponding to an assumed mass-flux profile. The fractional contribution of each layer to the midlevel plume buoyancy (i.e., the layer weight) is estimated from TRMM 3B42 precipitation and ERA-Interim thermodynamic profiles. The layer weights are used to “reverse engineer” a deep-inflow mass-flux profile that is nominally descriptive of the tropical atmosphere through the onset of deep convection. The layer weights—which are nearly the same for each of the layers—constitute an environmental influence function and are also used to compute a free-tropospheric integrated buoyancy measure. This measure is shown to be an effective predictor of onset in conditionally averaged precipitation across the global tropics—over both land and ocean.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-17-0333.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Fiaz Ahmed, fiaz@ucla.edu

This article is included in the Process-Oriented Model Diagnostics Special Collection.

Supplementary Materials

    • Supplemental Materials (PDF 1.32 MB)
Save