• Aiki, H., and T. Yamagata, 2006: Energetics of the layer-thickness form drag based on an integral identity. Ocean Sci., 2, 161171, https://doi.org/10.5194/os-2-161-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aiki, H., and R. J. Greatbatch, 2012: Thickness-weighted mean theory for the effect of surface gravity waves on mean flows in the upper ocean. J. Phys. Oceanogr., 42, 725747, https://doi.org/10.1175/JPO-D-11-095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aiki, H., K. Takaya, and R. J. Greatbatch, 2015: A divergence-form wave-induced pressure inherent in the extension of the Eliassen–Palm theory to a three-dimensional framework for all waves at all latitudes. J. Atmos. Sci., 72, 28222849, https://doi.org/10.1175/JAS-D-14-0172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., 1983: A finite-amplitude Eliassen-Palm theorem in isentropic coordinates. J. Atmos. Sci., 40, 18771883, https://doi.org/10.1175/1520-0469(1983)040<1877:AFAEPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bari, D. D., A. Gabriel, H. Kornich, and D. W. H. Peters, 2013: The effect of zonal asymmetries in the Brewer-Dobson circulation on ozone and water vapor distributions in the northern middle atmosphere. J. Geophys. Res. Atmos., 118, 34473466, https://doi.org/10.1029/2012JD017709.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bleck, R., 1985: On the conversion between mean and eddy components of potential and kinetic energy in isentropic and isopycnic coordinates. Dyn. Atmos. Oceans, 9, 1737, https://doi.org/10.1016/0377-0265(85)90014-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brayshaw, D. J., B. Hoskins, and M. Blackburn, 2009: The basic ingredients of the North Atlantic storm track. Part I: Land–sea contrast and orography. J. Atmos. Sci., 66, 25392558, https://doi.org/10.1175/2009JAS3078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bühler, O., 2009: Waves and Mean Flows. Cambridge University Press, 341 pp.

    • Crossref
    • Export Citation
  • Cai, M., and C. S. Shin, 2014: A total flow perspective of atmospheric mass and angular momentum circulations: Boreal winter mean state. J. Atmos. Sci., 71, 22442263, https://doi.org/10.1175/JAS-D-13-0175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callaghan, P. F., and M. L. Salby, 2002: Three-dimensionality and forcing of the Brewer–Dobson circulation. J. Atmos. Sci., 59, 976991, https://doi.org/10.1175/1520-0469(2002)059<0976:TDAFOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Czaja, A., and J. Marshall, 2006: The partitioning of poleward heat transport between the atmosphere and ocean. J. Atmos. Sci., 63, 14981511, https://doi.org/10.1175/JAS3695.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Szoeke, R. A., and A. F. Bennett, 1993: Microstructure fluxes across density surfaces. J. Phys. Oceanogr., 23, 22542264, https://doi.org/10.1175/1520-0485(1993)023<2254:MFADS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunkerton, T., 1978: On the mean meridional mass motions of the stratosphere and mesosphere. J. Atmos. Sci., 35, 23252333, https://doi.org/10.1175/1520-0469(1978)035<2325:OTMMMM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallimore, R. G., and D. R. Johnson, 1981: The forcing of the meridional circulation of the isentropic zonally averaged circumpolar vortex. J. Atmos. Sci., 38, 583599, https://doi.org/10.1175/1520-0469(1981)038<0583:TFOTMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., J. Willebrand, T. J. McDougall, and J. C. McWilliams, 1995: Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25, 463474, https://doi.org/10.1175/1520-0485(1995)025<0463:PEITTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., 1985: Theoretical interpretations of the Eliassen-Palm diagnostics of wave-mean flow interaction—Part I: Effects of the lower boundary. J. Meteor. Soc. Japan, 63, 497512, https://doi.org/10.2151/jmsj1965.63.4_497.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and T. Schneider, 1999: The surface branch of the zonally averaged mass transport circulation in the troposphere. J. Atmos. Sci., 56, 16881697, https://doi.org/10.1175/1520-0469(1999)056<1688:TSBOTZ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., P. H. Haynes, M. E. Mcintyre, A. R. Douglass, R. B. Rood, and L. Pfister, 1995: Stratosphere-troposphere exchange. Rev. Geophys., 33, 403439, https://doi.org/10.1029/95RG02097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inatsu, M., H. Mukougawa, and S. P. Xie, 2002: Stationary eddy response to surface boundary forcing: Idealized GCM experiments. J. Atmos. Sci., 59, 18981915, https://doi.org/10.1175/1520-0469(2002)059<1898:SERTSB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iwasaki, T., 1989: A diagnostic formulation for wave-mean flow interactions and Lagrangian-mean circulation with a hybrid vertical coordinate of pressure and isentropes. J. Meteor. Soc. Japan, 67, 293312, https://doi.org/10.2151/jmsj1965.67.2_293.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iwasaki, T., 1990: Lagrangian-mean circulation and wave-mean flow interactions of Eady’s baroclinic instability waves. J. Meteor. Soc. Japan, 68, 347356, https://doi.org/10.2151/jmsj1965.68.3_347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iwasaki, T., 1992: General-circulation diagnosis in the pressure-isentrope hybrid vertical coordinate. J. Meteor. Soc. Japan, 70, 673687, https://doi.org/10.2151/jmsj1965.70.2_673.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iwasaki, T., 2001: Atmospheric energy cycle viewed from wave–mean-flow interaction and Lagrangian mean circulation. J. Atmos. Sci., 58, 30363052, https://doi.org/10.1175/1520-0469(2001)058<3036:AECVFW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iwasaki, T., and Y. Mochizuki, 2012: Mass-weighted isentropic zonal mean equatorward flow in the Northern Hemispheric winter. SOLA, 8, 115118, https://doi.org/10.2151/sola.2012-029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iwasaki, T., T. Shoji, Y. Kanno, M. Sawada, M. Ujiie, and K. Takaya, 2014: Isentropic analysis of polar cold airmass streams in the Northern Hemispheric winter. J. Atmos. Sci., 71, 22302243, https://doi.org/10.1175/JAS-D-13-058.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, D. R., 1989: The forcing and maintenance of global monsoonal circulations: An isentropic analysis. Advances in Geophysics, Vol. 31, Academic Press, 43–316, https://doi.org/10.1016/S0065-2687(08)60053-9.

    • Crossref
    • Export Citation
  • Johnson, D. R., R. D. Townsend, and M.-Y. Wei, 1985: The thermally coupled response of the planetary scale circulation to the global distribution of heat sources and sinks. Tellus, 37A, 106125, https://doi.org/10.1111/j.1600-0870.1985.tb00274.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Juckes, M. N., I. N. James, and M. Blackburn, 1994: The influence of Antarctica on the momentum budget of the southern extratropics. Quart. J. Roy. Meteor. Soc., 120, 10171044, https://doi.org/10.1002/qj.49712051811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanno, Y., T. Shoji, and T. Iwasaki, 2015: Comparison study of the polar cold air mass between Northern and Southern Hemispheric winters based on a zonal-mean two-box model. Atmos. Sci. Lett., 16, 7076, https://doi.org/10.1002/asl2.522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kinoshita, T., and K. Sato, 2013: A formulation of three-dimensional residual mean flow applicable both to inertia–gravity waves and to Rossby waves. J. Atmos. Sci., 70, 15771602, https://doi.org/10.1175/JAS-D-12-0137.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kinoshita, T., Y. Tomikawa, and K. Sato, 2010: On the three-dimensional residual mean circulation and wave activity flux of the primitive equations. J. Meteor. Soc. Japan, 88, 373394, https://doi.org/10.2151/jmsj.2010-307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kinoshita, T., T. Iwasaki, and K. Sato, 2016: A formulation of three dimensional wave activity flux describing wave propagation on the mass-weighted isentropic time mean equation. SOLA, 12, 198202, https://doi.org/10.2151/sola.2016-040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koh, T. Y., and R. A. Plumb, 2004: Isentropic zonal average formalism and the near-surface circulation. Quart. J. Roy. Meteor. Soc., 130, 16311653, https://doi.org/10.1256/qj.02.219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laliberté, F., T. Shaw, and O. Pauluis, 2013: A theory for the lower-tropospheric structure of the moist isentropic circulation. J. Atmos. Sci., 70, 843854, https://doi.org/10.1175/JAS-D-12-066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, M.-M., D. P. Marshall, and R. G. Williams, 1997: On the eddy transfer of tracers: Advective or diffusive? J. Mar. Res., 55, 483505, https://doi.org/10.1357/0022240973224346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddison, J. R., and D. P. Marshall, 2013: The Eliassen–Palm flux tensor. J. Fluid Mech., 729, 69102, https://doi.org/10.1017/jfm.2013.259.

  • Manabe, S., J. Smagorinsky, and R. F. Strickler, 1965: Simulated climatology of a general circulation model with a hydrologic cycle. Mon. Wea. Rev., 93, 769798, https://doi.org/10.1175/1520-0493(1965)093<0769:SCOAGC>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., and P. C. McIntosh, 1996: The temporal-residual-mean velocity. Part I: Derivation and the scalar conservation equations. J. Phys. Oceanogr., 26, 26532665, https://doi.org/10.1175/1520-0485(1996)026<2653:TTRMVP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., and P. C. McIntosh, 2001: The temporal-residual-mean velocity. Part II: Isopycnal interpretation and the tracer and momentum equations. J. Phys. Oceanogr., 31, 12221246, https://doi.org/10.1175/1520-0485(2001)031<1222:TTRMVP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyazaki, K., and T. Iwasaki, 2005: Diagnosis of meridional ozone transport based on mass-weighted isentropic zonal means. J. Atmos. Sci., 62, 11921208, https://doi.org/10.1175/JAS3394.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyazaki, K., and T. Iwasaki, 2008: On the analysis of mean downward velocities around the Antarctic polar vortex. J. Atmos. Sci., 65, 39894003, https://doi.org/10.1175/2008JAS2749.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyazaki, K., T. Iwasaki, K. Shibata, and M. Deushi, 2005: Roles of transport in the seasonal variation of the total ozone amount. J. Geophys. Res., 110, D18309, https://doi.org/10.1029/2005JD005900.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyazaki, K., P. K. Patra, M. Takigawa, T. Iwasaki, and T. Nakazawa, 2008: Global-scale transport of carbon dioxide in the troposphere. J. Geophys. Res., 113, D15301, https://doi.org/10.1029/2007JD009557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orbe, C., P. A. Newman, D. W. Waugh, M. Holzer, L. D. Oman, F. Li, and L. M. Polvani, 2015: Airmass origin in the Arctic. Part I: Seasonality. J. Climate, 28, 49975014, https://doi.org/10.1175/JCLI-D-14-00720.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauluis, O., A. Czaja, and R. Korty, 2008: The global atmospheric circulation on moist isentropes. Science, 321, 10751078, https://doi.org/10.1126/science.1159649.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhines, P., 1982: Basic dynamics of the large-scale geostrophic circulation. 1982 summer study program in geophysical fluid dynamics: Particle motions in fluids, Woods Hole Oceanographic Institution Tech. Rep. WHOI-82-45, 1–4, https://doi.org/10.1575/1912/2895.

    • Crossref
    • Export Citation
  • Sato, K., Y. Tomikawa, G. Hashida, T. Yamanouchi, H. Nakajima, and T. Sugita, 2009: Longitudinally dependent ozone increase in the Antarctic polar vortex revealed by balloon and satellite observations. J. Atmos. Sci., 66, 18071820, https://doi.org/10.1175/2008JAS2904.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanaka, D., T. Iwasaki, S. Uno, M. Ujiie, and K. Miyazaki, 2004: Eliassen–Palm flux diagnosis based on isentropic representation. J. Atmos. Sci., 61, 23702383, https://doi.org/10.1175/1520-0469(2004)061<2370:EFDBOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Townsend, R. D., and D. R. Johnson, 1985: A diagnostic study of the isentropic zonally averaged mass circulation during the First GARP Global Experiment. J. Atmos. Sci., 42, 15651579, https://doi.org/10.1175/1520-0469(1985)042<1565:ADSOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tung, K. K., 1986: Nongeostrophic theory of zonally averaged circulation. Part I: Formulation. J. Atmos. Sci., 43, 26002618, https://doi.org/10.1175/1520-0469(1986)043<2600:NTOZAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uno, S., and T. Iwasaki, 2006: A cascade-type global energy conversion diagram based on wave–mean flow interactions. J. Atmos. Sci., 63, 32773295, https://doi.org/10.1175/JAS3804.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamada, R., and O. Pauluis, 2016: Momentum balance and Eliassen–Palm flux on moist isentropic surfaces. J. Atmos. Sci., 73, 12931314, https://doi.org/10.1175/JAS-D-15-0229.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, W. R., 2012: An exact thickness-weighted average formulation of the Boussinesq equations. J. Phys. Oceanogr., 42, 692707, https://doi.org/10.1175/JPO-D-11-0102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 62 62 27
Full Text Views 0 0 0
PDF Downloads 0 0 0

Three-Dimensional Structure of Mass-Weighted Isentropic Time-Mean Meridional Circulations

View More View Less
  • 1 Department of Geophysics, Graduate School of Science, Tohoku University, Sendai, Japan
© Get Permissions
Restricted access

Abstract

The present study develops a diagnostic framework for investigating the three-dimensional (3D) structure of mass-weighted isentropic time-mean (T-MIM) meridional circulations and conducts a preliminary analysis of the winter hemispheres. The T-MIM meridional velocity can unfold, in the zonal direction, time-averaged two-dimensional (2D) mass-weighted isentropic zonal means. Furthermore, the T-MIM velocity can be decomposed into the unweighted isentropic time-mean (uTM) velocity and the temporal eddy-correlated transport velocity, the so-called bolus velocity. The bolus velocity greatly contributes to the 2D extratropical direct circulation in the troposphere and to the Brewer–Dobson circulation in the stratosphere. The 3D bolus velocity seems to reflect the geographical distributions of baroclinic instability wave activity. In the boreal winter, both low-level equatorward flows and upper-level poleward flows are located around the North Pacific and North Atlantic storm tracks. In the austral winter, low-level equatorward flows extend zonally across the midlatitudes. In the subtropics, the 3D bolus velocity is found to be significant in the upper branch of the Hadley circulation. A zonal momentum equation is formulated to examine the 3D momentum balance of the meridional circulation in the T-MIM framework. In the extratropics, the uTM and bolus meridional velocities are in geostrophic balance with the stationary and transient components of the 3D Eliassen–Palm (EP) flux divergence, respectively. The pressure gradient force of transient baroclinic instability waves balances with the low-level equatorward flows of the bolus velocity in the storm tracks.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-17-0154.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuki Kanno, kanno@dc.tohoku.ac.jp

Abstract

The present study develops a diagnostic framework for investigating the three-dimensional (3D) structure of mass-weighted isentropic time-mean (T-MIM) meridional circulations and conducts a preliminary analysis of the winter hemispheres. The T-MIM meridional velocity can unfold, in the zonal direction, time-averaged two-dimensional (2D) mass-weighted isentropic zonal means. Furthermore, the T-MIM velocity can be decomposed into the unweighted isentropic time-mean (uTM) velocity and the temporal eddy-correlated transport velocity, the so-called bolus velocity. The bolus velocity greatly contributes to the 2D extratropical direct circulation in the troposphere and to the Brewer–Dobson circulation in the stratosphere. The 3D bolus velocity seems to reflect the geographical distributions of baroclinic instability wave activity. In the boreal winter, both low-level equatorward flows and upper-level poleward flows are located around the North Pacific and North Atlantic storm tracks. In the austral winter, low-level equatorward flows extend zonally across the midlatitudes. In the subtropics, the 3D bolus velocity is found to be significant in the upper branch of the Hadley circulation. A zonal momentum equation is formulated to examine the 3D momentum balance of the meridional circulation in the T-MIM framework. In the extratropics, the uTM and bolus meridional velocities are in geostrophic balance with the stationary and transient components of the 3D Eliassen–Palm (EP) flux divergence, respectively. The pressure gradient force of transient baroclinic instability waves balances with the low-level equatorward flows of the bolus velocity in the storm tracks.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-17-0154.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuki Kanno, kanno@dc.tohoku.ac.jp

Supplementary Materials

    • Supplemental Materials (DOCX 672.32 KB)
Save