Horizontal and Vertical Scaling of Cloud Geometry Inferred from CloudSat Data

A. Guillaume Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by A. Guillaume in
Current site
Google Scholar
PubMed
Close
,
B. H. Kahn Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by B. H. Kahn in
Current site
Google Scholar
PubMed
Close
,
Q. Yue Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Q. Yue in
Current site
Google Scholar
PubMed
Close
,
E. J. Fetzer Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by E. J. Fetzer in
Current site
Google Scholar
PubMed
Close
,
S. Wong Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by S. Wong in
Current site
Google Scholar
PubMed
Close
,
G. J. Manipon Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by G. J. Manipon in
Current site
Google Scholar
PubMed
Close
,
H. Hua Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by H. Hua in
Current site
Google Scholar
PubMed
Close
, and
B. D. Wilson Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by B. D. Wilson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A method is described to characterize the scale dependence of cloud chord length using cloud-type classification reported with the 94-GHz CloudSat radar. The cloud length along the CloudSat track is quantified using horizontal and vertical structures of cloud classification separately for each cloud type and for all clouds independent of cloud type. While the individual cloud types do not follow a clear power-law behavior as a function of horizontal or vertical scale, a robust power-law scaling of cloud chord length is observed when cloud type is not considered. The exponent of horizontal length is approximated by β ≈ 1.66 ± 0.00 across two orders of magnitude (~10–1000 km). The exponent of vertical thickness is approximated by β ≈ 2.23 ± 0.03 in excess of one order of magnitude (~1–14 km). These exponents are in agreement with previous studies using numerical models, satellites, dropsondes, and in situ aircraft observations. These differences in horizontal and vertical cloud scaling are consistent with scaling of temperature and horizontal wind in the horizontal dimension and with scaling of buoyancy flux in the vertical dimension. The observed scale dependence should serve as a guide to test and evaluate scale-cognizant climate and weather numerical prediction models.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alexandre Guillaume, alexandre.guillaume@jpl.nasa.gov

Abstract

A method is described to characterize the scale dependence of cloud chord length using cloud-type classification reported with the 94-GHz CloudSat radar. The cloud length along the CloudSat track is quantified using horizontal and vertical structures of cloud classification separately for each cloud type and for all clouds independent of cloud type. While the individual cloud types do not follow a clear power-law behavior as a function of horizontal or vertical scale, a robust power-law scaling of cloud chord length is observed when cloud type is not considered. The exponent of horizontal length is approximated by β ≈ 1.66 ± 0.00 across two orders of magnitude (~10–1000 km). The exponent of vertical thickness is approximated by β ≈ 2.23 ± 0.03 in excess of one order of magnitude (~1–14 km). These exponents are in agreement with previous studies using numerical models, satellites, dropsondes, and in situ aircraft observations. These differences in horizontal and vertical cloud scaling are consistent with scaling of temperature and horizontal wind in the horizontal dimension and with scaling of buoyancy flux in the vertical dimension. The observed scale dependence should serve as a guide to test and evaluate scale-cognizant climate and weather numerical prediction models.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alexandre Guillaume, alexandre.guillaume@jpl.nasa.gov
Save
  • Bacmeister, J. T., and G. L. Stephens, 2011: Spatial statistics of likely convective clouds in CloudSat data. J. Geophys. Res., 116, D04104, https://doi.org/10.1029/2010JD014444.

    • Search Google Scholar
    • Export Citation
  • Barker, H. W., Z. Qu, S. Bélair, S. Leroyer, J. A. Milbrandt, and P. A. Vaillancourt, 2017: Scaling properties of observed and simulated satellite visible radiances. J. Geophys. Res. Atmos., 122, 94139429, https://doi.org/10.1002/2017JD027146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bony, S., and Coauthors, 2015: Clouds, circulation and climate sensitivity. Nat. Geosci., 8, 261268, https://doi.org/10.1038/ngeo2398.

  • Cahalan, R. F., W. Ridgway, W. J. Wiscombe, T. L. Bell, and J. B. Snider, 1994: The albedo of fractal stratocumulus clouds. J. Atmos. Sci., 51, 24342455, https://doi.org/10.1175/1520-0469(1994)051<2434:TAOFSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cho, J. Y. N., and Coauthors, 1999: Horizontal wavenumber spectra of winds, temperature, and trace gases during the Pacific Exploratory Missions: 1. Climatology. J. Geophys. Res., 104, 56975716, https://doi.org/10.1029/98JD01825.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clauset, A., C. R. Shalizi, and M. E. J. Newman, 2009: Power-law distributions in empirical data. SIAM Rev., 51, 661703, https://doi.org/10.1137/070710111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cusack, S., J. M. Edwards, and R. Kershaw, 1999: Estimating the subgrid variance of saturation, and its parameterization for use in a GCM cloud scheme. Quart. J. Roy. Meteor. Soc., 125, 30573076, https://doi.org/10.1002/qj.49712556013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, A. B., and A. Marshak, 2010: Solar radiation transport in the cloudy atmosphere: A 3D perspective on observations and climate impacts. Rep. Prog. Phys., 73, 026801, https://doi.org/10.1088/0034-4885/73/2/026801.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, L., C. Kiemle, and G. C. Craig, 2012: Height-resolved variability of midlatitude tropospheric water vapor measured by an airborne lidar. Geophys. Res. Lett., 39, L06803, https://doi.org/10.1029/2011GL050621.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, L., G. C. Craig, and C. Kiemle, 2013: Horizontal structure function and vertical correlation analysis of mesoscale water vapor variability observed by airborne lidar. J. Geophys. Res. Atmos., 118, 75797590, https://doi.org/10.1002/jgrd.50588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldstein, M. L., S. A. Morris, and G. G. Yen, 2004: Problems with fitting to the power-law distribution. Eur. Phys. J., 41B, 255258, https://doi.org/10.1140/epjb/e2004-00316-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamilton, K., Y. O. Takahashi, and W. Ohfuchi, 2008: Mesoscale spectrum of atmospheric motions investigated in a very fine resolution global general circulation model. J. Geophys. Res., 113, D18110, https://doi.org/10.1029/2008JD009785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., A. A. Wing, S. Bony, C. Muller, H. Masunaga, T. S. L’Ecuyer, D. D. Turner, and P. Zuidema, 2017: Observing convective aggregation. Surv. Geophys., 38, 11991236, https://doi.org/10.1007/s10712-017-9419-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., https://doi.org/10.1017/CBO9781107415324.

    • Crossref
    • Export Citation
  • Kahn, B. H., and J. Teixeira, 2009: A global climatology of temperature and water vapor variance scaling from the atmospheric infrared sounder. J. Climate, 22, 55585576, https://doi.org/10.1175/2009JCLI2934.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kahn, B. H., and Coauthors, 2011: Temperature and water vapor variance scaling in global models: Comparisons to satellite and aircraft data. J. Atmos. Sci., 68, 21562168, https://doi.org/10.1175/2011JAS3737.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiemle, C., G. Ehret, S. R. Kawa, and E. V. Browell, 2015: The global distribution of cloud gaps in CALIPSO data. J. Quant. Spectrosc. Radiat. Transfer, 153, 95101, https://doi.org/10.1016/j.jqsrt.2014.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landau, L. D., and E. M. Lifshitz, 1987: Fluid Mechanics. 2nd ed. Landau and Lifshitz: Course of Theoretical Physics, Vol. 6, Pergamon, 134 pp.

  • Lilley, M., S. Lovejoy, K. Strawbridge, and D. Schertzer, 2004: 23/9 dimensional anisotropic scaling of passive admixtures using lidar data of aerosols. Phys. Rev., 70E, 036307, https://doi.org/10.1103/PhysRevE.70.036307.

    • Search Google Scholar
    • Export Citation
  • Lindborg, E., 2007: Horizontal wavenumber spectra of vertical vorticity and horizontal divergence in the upper troposphere and lower stratosphere. J. Atmos. Sci., 64, 10171025, https://doi.org/10.1175/JAS3864.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lovejoy, S., 1982: Area-perimeter for rain and cloud areas. Science, 216, 185187, https://doi.org/10.1126/science.216.4542.185.

  • Lovejoy, S., and D. Schertzer, 2013: The Weather and Climate: Emergent Laws and Multifractal Cascades. Cambridge University Press, 505 pp.

    • Crossref
    • Export Citation
  • Lovejoy, S., A. F. Tuck, S. J. Hovde, and D. Schertzer, 2007: Is isotropic turbulence relevant in the atmosphere? Geophys. Res. Lett., 34, L15802, https://doi.org/10.1029/2007GL029359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lovejoy, S., A. F. Tuck, and D. Schertzer, 2010: Horizontal cascade structure of atmospheric fields determined from aircraft data. J. Geophys. Res., 115, D13105, https://doi.org/10.1029/2009JD013353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mauritsen, T., and B. Stevens, 2015: Missing iris effect as a possible cause of muted hydrological change and high climate sensitivity in models. Nat. Geosci., 8, 346351, https://doi.org/10.1038/ngeo2414.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, S. D., and Coauthors, 2014: Estimating three-dimensional cloud structure via statistically blended satellite observations. J. Appl. Meteor. Climatol., 53, 437455, https://doi.org/10.1175/JAMC-D-13-070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nastrom, G. D., and K. S. Gage, 1985: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci., 42, 950960, https://doi.org/10.1175/1520-0469(1985)042<0950:ACOAWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nastrom, G. D., W. H. Jasperson, and K. S. Gage, 1986: Horizontal spectra of atmospheric tracers measured during the global atmospheric sampling program. J. Geophys. Res., 91, 13 20113 209, https://doi.org/10.1029/JD091iD12p13201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M. E. J., 2005: Power laws, Pareto distributions and Zipf’s law. Contemp. Phys., 46, 323351, https://doi.org/10.1080/00107510500052444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noda, A. T., M. Satoh, Y. Yamada, C. Kodama, and T. Seiki, 2014: Responses of tropical and subtropical high-cloud statistics to global warming. J. Climate, 27, 77537768, https://doi.org/10.1175/JCLI-D-14-00179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Brien, T. A., F. Li, W. D. Collins, S. A. Rauscher, T. D. Ringler, M. Taylor, S. M. Hagos, and L. R. Leung, 2013: Observed scaling in clouds and precipitation and scale incognizance in regional to global atmospheric models. J. Climate, 26, 93139333, https://doi.org/10.1175/JCLI-D-13-00005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., 1996: Anomalous scaling of high cloud variability in the tropical Pacific. Geophys. Res. Lett., 23, 10951098, https://doi.org/10.1029/96GL01121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pressel, K. G., and W. D. Collins, 2012: First-order structure function analysis of statistical scale invariance in the AIRS-observed water vapor field. J. Climate, 25, 55385555, https://doi.org/10.1175/JCLI-D-11-00374.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pressel, K. G., W. D. Collins, and A. R. Desai, 2014: The spatial scale dependence of water vapor variability inferred from observations from a very tall tower. J. Geophys. Res. Atmos., 119, 98229837, https://doi.org/10.1002/2013JD021141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Resnick, S. I., 2007: Heavy-Tail Phenomena: Probabilistic and Statistical Modeling. Springer, 404 pp.

  • Sassen, K., and Z. Wang, 2005: Level 2 cloud scenario classification product process description and interface control document. Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO, 36 pp., http://cswww.cira.colostate.edu/ICD/2B-CLDCLASS/2B-CLDCLASS_PDICD_4.0.pdf.

  • Sassen, K., and Z. Wang, 2008: Classifying clouds around the globe with the CloudSat radar: 1-year of results. Geophys. Res. Lett., 35, L04805, https://doi.org/10.1029/2007GL032591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schemann, V., B. Stevens, V. Grützun, and J. Quaas, 2013: Scale dependency of total water variance and its implication for cloud parameterizations. J. Atmos. Sci., 70, 36153630, https://doi.org/10.1175/JAS-D-13-09.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schertzer, D., and S. Lovejoy, 1983: Elliptical turbulence in the atmosphere. Proc. Fourth Symp. on Turbulent Shear Flows, Karlsruhle, West Germany, 11.1–11.8.

  • Schertzer, D., and S. Lovejoy, 1985: Generalised scale invariance in turbulent phenomena. PhysicoChem. Hydrodyn., 6, 623635.

  • Siebesma, A. P., and H. J. J. Jonker, 2000: Anomalous scaling of cumulus cloud boundaries. Phys. Rev. Lett., 85, 214217, https://doi.org/10.1103/PhysRevLett.85.214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032, https://doi.org/10.1175/MWR2830.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83, 17711790, https://doi.org/10.1175/BAMS-83-12-1771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, Y. O., K. Hamilton, and W. Ohfuchi, 2006: Explicit global simulation of the mesoscale spectrum of atmospheric motions. Geophys. Res. Lett., 33, L12812, https://doi.org/10.1029/2006GL026429.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tjemkes, S. A., and M. Visser, 1994: Horizontal variability of temperature, specific humidity, and cloud liquid water as derived from spaceborne observations. J. Geophys. Res., 99, 23 08923 105, https://doi.org/10.1029/94JD01718.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuck, A. F., 2010: From molecules to meteorology via turbulent scale invariance. Quart. J. Roy. Meteor. Soc., 136, 11251144, https://doi.org/10.1002/qj.644; Corrigendum, 137, 275, https://doi.org/10.1002/qj.780.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wing, A. A., and K. A. Emanuel, 2014: Physical mechanisms controlling self-aggregation of convection in idealized numerical modeling simulations. J. Adv. Model. Earth Syst., 6, 5974, https://doi.org/10.1002/2013MS000269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., and J. P. Taylor, 2001: Liquid water path variability in unbroken marine stratocumulus cloud. Quart. J. Roy. Meteor. Soc., 127, 26352662, https://doi.org/10.1002/qj.49712757807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., and P. R. Field, 2011: The distribution of cloud horizontal sizes. J. Climate, 24, 48004816, https://doi.org/10.1175/2011JCLI4056.1.

  • Zelinka, M. D., C. Zhou, and S. A. Klein, 2016: Insights from a refined decomposition of cloud feedbacks. Geophys. Res. Lett., 43, 92599269, https://doi.org/10.1002/2016GL069917.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D., T. Luo, D. Liu, and Z. Wang, 2014: Spatial scales of altocumulus clouds observed with collocated CALIPSO and CloudSat measurements. Atmos. Res., 149, 5869, https://doi.org/10.1016/j.atmosres.2014.05.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, G., and L. Di Girolamo, 2007: Statistics on the macrophysical properties of trade wind cumuli over the tropical western Atlantic. J. Geophys. Res., 112, D10204, https://doi.org/10.1029/2006JD007371.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 657 226 11
PDF Downloads 564 133 11