Computation and Characterization of Local Subfilter-Scale Energy Transfers in Atmospheric Flows

Davide Faranda Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
London Mathematical Laboratory, London, United Kingdom

Search for other papers by Davide Faranda in
Current site
Google Scholar
PubMed
Close
,
Valerio Lembo Meteorological Institute, University of Hamburg, Hamburg, Germany

Search for other papers by Valerio Lembo in
Current site
Google Scholar
PubMed
Close
,
Manasa Iyer Sorbonne Université, UPMC Université Paris 06, CNRS UMR 7190, Institut Jean le Rond d’Alembert, Paris, France

Search for other papers by Manasa Iyer in
Current site
Google Scholar
PubMed
Close
,
Denis Kuzzay Université Lyon, Ens de Lyon, Université Claude Bernard, CNRS, Laboratoire de Physique, Lyon, France

Search for other papers by Denis Kuzzay in
Current site
Google Scholar
PubMed
Close
,
Sergio Chibbaro Sorbonne Université, UPMC Université Paris 06, CNRS UMR 7190, Institut Jean le Rond d’Alembert, Paris, France

Search for other papers by Sergio Chibbaro in
Current site
Google Scholar
PubMed
Close
,
Francois Daviaud SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, Gif-sur-Yvette, France

Search for other papers by Francois Daviaud in
Current site
Google Scholar
PubMed
Close
, and
Berengere Dubrulle SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, Gif-sur-Yvette, France

Search for other papers by Berengere Dubrulle in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Atmospheric motions are governed by turbulent motions associated to nontrivial energy transfers at small scales (direct cascade) and/or at large scales (inverse cascade). Although it is known that the two cascades coexist, energy fluxes have been previously investigated from the spectral point of view but not on their instantaneous spatial and local structure. Here, we compute local and instantaneous subfilter-scale energy transfers in two sets of reanalyses (NCEP–NCAR and ERA-Interim) in the troposphere and the lower stratosphere for the year 2005. The fluxes are mostly positive (toward subgrid scales) in the troposphere and negative in the stratosphere, reflecting the baroclinic and barotropic nature of the motions, respectively. The most intense positive energy fluxes are found in the troposphere and are associated with baroclinic eddies or tropical cyclones. The computation of such fluxes can be used to characterize the amount of energy lost or missing at the smallest scales in climate and weather models.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-17-0114.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Davide Faranda, davide.faranda@lsce.ipsl.fr

Abstract

Atmospheric motions are governed by turbulent motions associated to nontrivial energy transfers at small scales (direct cascade) and/or at large scales (inverse cascade). Although it is known that the two cascades coexist, energy fluxes have been previously investigated from the spectral point of view but not on their instantaneous spatial and local structure. Here, we compute local and instantaneous subfilter-scale energy transfers in two sets of reanalyses (NCEP–NCAR and ERA-Interim) in the troposphere and the lower stratosphere for the year 2005. The fluxes are mostly positive (toward subgrid scales) in the troposphere and negative in the stratosphere, reflecting the baroclinic and barotropic nature of the motions, respectively. The most intense positive energy fluxes are found in the troposphere and are associated with baroclinic eddies or tropical cyclones. The computation of such fluxes can be used to characterize the amount of energy lost or missing at the smallest scales in climate and weather models.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-17-0114.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Davide Faranda, davide.faranda@lsce.ipsl.fr

Supplementary Materials

    • Supplemental Materials (ZIP 21.75 MB)
Save
  • Augier, P., and E. Lindborg, 2013: A new formulation of the spectral energy budget of the atmosphere, with application to two high-resolution general circulation models. J. Atmos. Sci., 70, 22932308, https://doi.org/10.1175/JAS-D-12-0281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Augier, P., S. Galtier, and P. Billant, 2012: Kolmogorov laws for stratified turbulence. J. Fluid Mech., 709, 659670, https://doi.org/10.1017/jfm.2012.379.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bartello, P., 1995: Geostrophic adjustment and inverse cascades in rotating stratified turbulence. J. Atmos. Sci., 52, 44104428, https://doi.org/10.1175/1520-0469(1995)052<4410:GAAICI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beljaars, A., 1995: The parametrization of surface fluxes in large-scale models under free convection. Quart. J. Roy. Meteor. Soc., 121, 255270, https://doi.org/10.1002/qj.49712152203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berrisford, P., P. Kållberg, S. Kobayashi, D. Dee, S. Uppala, J. Simmons, P. Poli, and H. Sato, 2011: Atmospheric conservation properties in ERA-Interim. Quart. J. Roy. Meteor. Soc., 137, 13811399, https://doi.org/10.1002/qj.864.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bou-Zeid, E., C. Meneveau, and M. B. Parlange, 2004: Large-eddy simulation of neutral atmospheric boundary layer flow over heterogeneous surfaces: Blending height and effective surface roughness. Water Resour. Res., 40, W02505, https://doi.org/10.1029/2003WR002475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brunke, M. A., Z. Wang, X. Zeng, M. Bosilovich, and C.-L. Shie, 2011: An assessment of the uncertainties in ocean surface turbulent fluxes in 11 reanalysis, satellite-derived, and combined global datasets. J. Climate, 24, 54695493, https://doi.org/10.1175/2011JCLI4223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burgess, B. H., A. R. Erler, and T. G. Shepherd, 2013: The troposphere-to-stratosphere transition in kinetic energy spectra and nonlinear spectral fluxes as seen in ECMWF analyses. J. Atmos. Sci., 70, 669687, https://doi.org/10.1175/JAS-D-12-0129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campagne, A., 2015: Cascades dénergie et turbulence dondes dans une expérience de turbulence en rotation. Ph.D. thesis, Université Paris Sud, 129 pp.

  • Campagne, A., B. Gallet, F. Moisy, and P.-P. Cortet, 2014: Direct and inverse energy cascades in a forced rotating turbulence experiment. Phys. Fluids, 26, 125112, https://doi.org/10.1063/1.4904957.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1971: Geostrophic turbulence. J. Atmos. Sci., 28, 10871095, https://doi.org/10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duchon, J., and R. Robert, 2000: Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations. Nonlinearity, 13, 249255, https://doi.org/10.1088/0951-7715/13/1/312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Falkovich, G., 1992: Inverse cascade and wave condensate in mesoscale atmospheric turbulence. Phys. Rev. Lett., 69, 31733176, https://doi.org/10.1103/PhysRevLett.69.3173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frisch, U., 1995: Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press, 296 pp.

    • Crossref
    • Export Citation
  • Gage, K., 1979: Evidence for a k5/3 law inertial range in mesoscale two-dimensional turbulence. J. Atmos. Sci., 36, 19501954, https://doi.org/10.1175/1520-0469(1979)036<1950:EFALIR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, C. W., M. B. Parlange, and C. Meneveau, 2003: Alignment trends of velocity gradients and subgrid-scale fluxes in the turbulent atmospheric boundary layer. Bound.-Layer Meteor., 109, 5983, https://doi.org/10.1023/A:1025484500899.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and G. J. Hakim, 2012: An Introduction to Dynamic Meteorology. 5th ed. International Geophysics Series, Vol. 88, Academic Press, 552 pp.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kitamura, Y., and Y. Matsuda, 2006: The kH −3 and kH −5/3 energy spectra in stratified turbulence. Geophys. Res. Lett., 33, L05809, https://doi.org/10.1029/2005GL024996.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, R., N. Botta, T. Schneider, C.-D. Munz, S. Roller, A. Meister, L. Hoffmann, and T. Sonar, 2001: Asymptotic adaptive methods for multi-scale problems in fluid mechanics. Practical Asymptotics, Springer, 261–343.

    • Crossref
    • Export Citation
  • Kolmogorov, A. N., 1941: Dissipation of energy in locally isotropic turbulence. Dokl. Akad. Nauk SSSR, 32, 1618.

  • Koshyk, J. N., B. A. Boville, K. Hamilton, E. Manzini, and K. Shibata, 1999: Kinetic energy spectrum of horizontal motions in middle-atmosphere models. J. Geophys. Res., 104, 27 17727 190, https://doi.org/10.1029/1999JD900814.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuzzay, D., D. Faranda, and B. Dubrulle, 2015: Global vs local energy dissipation: The energy cycle of the turbulent von Kármán flow. Phys. Fluids, 27, 075105, https://doi.org/10.1063/1.4923750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levich, E., and E. Tzvetkov, 1985: Helical inverse cascade in three-dimensional turbulence as a fundamental dominant mechanism in mesoscale atmospheric phenomena. Phys. Rep., 128, 137, https://doi.org/10.1016/0370-1573(85)90036-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1983: Stratified turbulence and the mesoscale variability of the atmosphere. J. Atmos. Sci., 40, 749761, https://doi.org/10.1175/1520-0469(1983)040<0749:STATMV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindborg, E., 2005: The effect of rotation on the mesoscale energy cascade in the free atmosphere. Geophys. Res. Lett., 32, L01809, https://doi.org/10.1029/2004GL021319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindborg, E., 2006: The energy cascade in a strongly stratified fluid. J. Fluid Mech., 550, 207242, https://doi.org/10.1017/S0022112005008128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindborg, E., and J. Y. N. Cho, 2001: Horizontal velocity structure functions in the upper troposphere and lower stratosphere: 2. Theoretical considerations. J. Geophys. Res., 106, 10 23310 241, https://doi.org/10.1029/2000JD900815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7, 157167, https://doi.org/10.3402/tellusa.v7i2.8796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lovejoy, S., and D. Schertzer, 2010: Towards a new synthesis for atmospheric dynamics: Space–time cascades. Atmos. Res., 96, 152, https://doi.org/10.1016/j.atmosres.2010.01.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lübken, F.-J., 1997: Seasonal variation of turbulent energy dissipation rates at high latitudes as determined by in situ measurements of neutral density fluctuations. J. Geophys. Res., 102, 13 44113 456, https://doi.org/10.1029/97JD00853.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lucarini, V., and F. Ragone, 2011: Energetics of climate models: Net energy balance and meridional enthalpy transport. Rev. Geophys., 49, RG1001, https://doi.org/10.1029/2009RG000323.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, L. M., F. Gans, and A. Kleidon, 2011: Estimating maximum global land surface wind power extractability and associated climatic consequences. Earth Syst. Dyn., 2, 112, https://doi.org/10.5194/esd-2-1-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, L. M., N. A. Brunsell, D. B. Mechem, F. Gans, A. J. Monaghan, R. Vautard, D. W. Keith, and A. Kleidon, 2015: Two methods for estimating limits to large-scale wind power generation. Proc. Natl. Acad. Sci. USA, 112, 11 16911 174, https://doi.org/10.1073/pnas.1408251112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyakoda, K., and J. Sirutis, 1986: Manual of the e-physics. Geophysical Fluid Dynamics Laboratory Rep., 122 pp.

  • Nastrom, G., and K. S. Gage, 1985: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci., 42, 950960, https://doi.org/10.1175/1520-0469(1985)042<0950:ACOAWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parrish, D. F., and J. C. Derber, 1992: The National Meteorological Center’s spectral statistical-interpolation analysis system. Mon. Wea. Rev., 120, 17471763, https://doi.org/10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, J., L. Zhang, and J. Guan, 2015: Applications of a moist nonhydrostatic formulation of the spectral energy budget to baroclinic waves. Part I: The lower-stratospheric energy spectra. J. Atmos. Sci., 72, 20902108, https://doi.org/10.1175/JAS-D-14-0306.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pouquet, A., and R. Marino, 2013: Geophysical turbulence and the duality of the energy flow across scales. Phys. Rev. Lett., 111, 234501, https://doi.org/10.1103/PhysRevLett.111.234501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pouquet, A., R. Marino, P. D. Mininni, and D. Rosenberg, 2017: Dual constant-flux energy cascades to both large scales and small scales. Phys. Fluids, 29, 111108, https://doi.org/10.1063/1.5000730.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Priestley, C. H. B., 1959: Turbulent Transfer in the Lower Atmosphere. University of Chicago Press, 130 pp.

  • Rhines, P. B., 1979: Geostrophic turbulence. Annu. Rev. Fluid Mech., 11, 401441, https://doi.org/10.1146/annurev.fl.11.010179.002153.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salby, M. L., 1996: Fundamentals of Atmospheric Physics. International Geophysics Series, Vol. 61, Academic Press, 627 pp.

  • Saw, E.-W., D. Kuzzay, D. Faranda, A. Guittonneau, F. Daviaud, C. Wiertel-Gasquet, V. Padilla, and B. Dubrulle, 2016: Experimental characterization of extreme events of inertial dissipation in a turbulent swirling flow. Nat. Commun., 7, 12466, https://doi.org/10.1038/ncomms12466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schertzer, D., S. Lovejoy, F. Schmitt, Y. Chigirinskaya, and D. Marsan, 1997: Multifractal cascade dynamics and turbulent intermittency. Fractals, 5, 427471, https://doi.org/10.1142/S0218348X97000371.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seinfeld, J. H., and S. N. Pandis, 2016: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. John Wiley and Sons, 1152 pp.

  • Sellers, W. D., 1969: A global climatic model based on the energy balance of the earth-atmosphere system. J. Appl. Meteor., 8, 392400, https://doi.org/10.1175/1520-0450(1969)008<0392:AGCMBO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tung, K. K., and W. W. Orlando, 2003: The k−3 and k−5/3 energy spectrum of atmospheric turbulence: Quasigeostrophic two-level model simulation. J. Atmos. Sci., 60, 824835, https://doi.org/10.1175/1520-0469(2003)060<0824:TKAKES>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viterbo, P., and A. C. Beljaars, 1995: An improved land surface parameterization scheme in the ECMWF model and its validation. J. Climate, 8, 27162748, https://doi.org/10.1175/1520-0442(1995)008<2716:AILSPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viterbo, P., and A. K. Betts, 1999: Impact on ECMWF forecasts of changes to the albedo of the boreal forests in the presence of snow. J. Geophys. Res., 104, 27 80327 810, https://doi.org/10.1029/1998JD200076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Žagar, N., D. Jelić, M. Blaauw, and P. Bechtold, 2017: Energy spectra and inertia–gravity waves in global analyses. J. Atmos. Sci., 74, 24472466, https://doi.org/10.1175/JAS-D-16-0341.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 450 167 8
PDF Downloads 473 155 9