A Mesocosm Double Feature: Insights into the Chemical Makeup of Marine Ice Nucleating Particles

Christina S. McCluskey Colorado State University, Fort Collins, Colorado

Search for other papers by Christina S. McCluskey in
Current site
Google Scholar
PubMed
Close
,
Thomas C. J. Hill Colorado State University, Fort Collins, Colorado

Search for other papers by Thomas C. J. Hill in
Current site
Google Scholar
PubMed
Close
,
Camille M. Sultana University of California, San Diego, La Jolla, California

Search for other papers by Camille M. Sultana in
Current site
Google Scholar
PubMed
Close
,
Olga Laskina The University of Iowa, Iowa City, Iowa

Search for other papers by Olga Laskina in
Current site
Google Scholar
PubMed
Close
,
Jonathan Trueblood The University of Iowa, Iowa City, Iowa
University of California, San Diego, La Jolla, California

Search for other papers by Jonathan Trueblood in
Current site
Google Scholar
PubMed
Close
,
Mitchell V. Santander University of California, San Diego, La Jolla, California

Search for other papers by Mitchell V. Santander in
Current site
Google Scholar
PubMed
Close
,
Charlotte M. Beall Scripps Institution of Oceanography, La Jolla, California

Search for other papers by Charlotte M. Beall in
Current site
Google Scholar
PubMed
Close
,
Jennifer M. Michaud University of California, San Diego, La Jolla, California

Search for other papers by Jennifer M. Michaud in
Current site
Google Scholar
PubMed
Close
,
Sonia M. Kreidenweis Colorado State University, Fort Collins, Colorado

Search for other papers by Sonia M. Kreidenweis in
Current site
Google Scholar
PubMed
Close
,
Kimberly A. Prather University of California, San Diego, La Jolla, California
Scripps Institution of Oceanography, La Jolla, California

Search for other papers by Kimberly A. Prather in
Current site
Google Scholar
PubMed
Close
,
Vicki Grassian The University of Iowa, Iowa City, Iowa
University of California, San Diego, La Jolla, California

Search for other papers by Vicki Grassian in
Current site
Google Scholar
PubMed
Close
, and
Paul J. DeMott Colorado State University, Fort Collins, Colorado

Search for other papers by Paul J. DeMott in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The abundance of atmospheric ice nucleating particles (INPs) is a source of uncertainty for numerical representation of ice-phase transitions in mixed-phase clouds. While sea spray aerosol (SSA) exhibits less ice nucleating (IN) ability than terrestrial aerosol, marine INP emissions are linked to oceanic biological activity and are potentially an important source of INPs over remote oceans. Inadequate knowledge of marine INP identity limits the ability to parameterize this complex INP source. A previous manuscript described abundances of marine INPs in relation to several aerosol composition and ocean biology observations during two laboratory mesocosm experiments. In this study, the abundances and chemical and physical properties of INPs found during the same mesocosm experiments were directly probed in SSA, seawater, and surface microlayer samples. Two unique marine INP populations were found: 1) dissolved organic carbon INPs are suggested to be composed of IN-active molecules, and 2) particulate organic carbon INPs are attributed as intact cells or IN-active microbe fragments. Both marine INP types are likely to be emitted into SSA following decay of phytoplankton biomass when 1) the surface microlayer is significantly enriched with exudates and cellular detritus and SSA particles are preferentially coated with IN-active molecules or 2) diatom fragments and bacteria are relatively abundant in seawater and therefore more likely transferred into SSA. These findings inform future efforts for incorporating marine INP emissions into numerical models and motivate future studies to quantify specific marine molecules and isolate phytoplankton, bacteria, and other species that contribute to these marine INP types.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-17-0155.s1.

Current affiliation: National Center for Atmospheric Research, Boulder, Colorado.

Current affiliation: rap.ID, Inc., Monmouth Junction, New Jersey.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Christina McCluskey, cmcclus@ucar.edu

This article is included in the Aerosol-Cloud-Precipitation-Climate Interaction Special Collection.

Abstract

The abundance of atmospheric ice nucleating particles (INPs) is a source of uncertainty for numerical representation of ice-phase transitions in mixed-phase clouds. While sea spray aerosol (SSA) exhibits less ice nucleating (IN) ability than terrestrial aerosol, marine INP emissions are linked to oceanic biological activity and are potentially an important source of INPs over remote oceans. Inadequate knowledge of marine INP identity limits the ability to parameterize this complex INP source. A previous manuscript described abundances of marine INPs in relation to several aerosol composition and ocean biology observations during two laboratory mesocosm experiments. In this study, the abundances and chemical and physical properties of INPs found during the same mesocosm experiments were directly probed in SSA, seawater, and surface microlayer samples. Two unique marine INP populations were found: 1) dissolved organic carbon INPs are suggested to be composed of IN-active molecules, and 2) particulate organic carbon INPs are attributed as intact cells or IN-active microbe fragments. Both marine INP types are likely to be emitted into SSA following decay of phytoplankton biomass when 1) the surface microlayer is significantly enriched with exudates and cellular detritus and SSA particles are preferentially coated with IN-active molecules or 2) diatom fragments and bacteria are relatively abundant in seawater and therefore more likely transferred into SSA. These findings inform future efforts for incorporating marine INP emissions into numerical models and motivate future studies to quantify specific marine molecules and isolate phytoplankton, bacteria, and other species that contribute to these marine INP types.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-17-0155.s1.

Current affiliation: National Center for Atmospheric Research, Boulder, Colorado.

Current affiliation: rap.ID, Inc., Monmouth Junction, New Jersey.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Christina McCluskey, cmcclus@ucar.edu

This article is included in the Aerosol-Cloud-Precipitation-Climate Interaction Special Collection.

Supplementary Materials

    • Supplemental Materials (DOCX 2.80 MB)
Save
  • Agresti, A., and B. A. Coull, 1998: Approximate is better than “exact” for interval estimation of binomial proportions. Amer. Stat., 52, 119126, https://doi.org/10.1080/00031305.1998.10480550.

    • Search Google Scholar
    • Export Citation
  • Azam, F., and F. Malfatti, 2007: Microbial structuring of marine ecosystems. Nat. Rev. Microbiol., 5, 782791, https://doi.org/10.1038/nrmicro1747.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barker, D. R., and H. Zeitlin, 1972: Metal-ion concentrations in sea-surface microlayer and size-separated atmospheric aerosol samples in Hawaii. J. Geophys. Res., 77, 50765086, https://doi.org/10.1029/JC077i027p05076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bigg, E. K., 1973: Ice nucleus concentrations in remote areas. J. Atmos. Sci., 30, 11531157, https://doi.org/10.1175/1520-0469(1973)030<1153:INCIRA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanchard, D. C., 1963: The electrification of the atmosphere by particles from bubbles in the sea. Prog. Oceanogr., 1, 73112, https://doi.org/10.1016/0079-6611(63)90004-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanchard, D. C., and A. H. Woodcock, 1957: Bubble formation and modification in the sea and its meteorological significance. Tellus, 9, 145158, https://doi.org/10.1111/j.2153-3490.1957.tb01867.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boström, K. H., K. Simu, Å. Hagström, and L. Riemann, 2004: Optimization of DNA extraction for quantitative marine bacterioplankton community analysis. Limnol. Oceanogr.: Methods, 2, 365373, https://doi.org/10.4319/lom.2004.2.365.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burrows, S. M., C. Hoose, U. Pöschl, and M. G. Lawrence, 2013: Ice nuclei in marine air: Biogenic particles or dust? Atmos. Chem. Phys., 13, 245267, https://doi.org/10.5194/acp-13-245-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carslaw, K. S., and Coauthors, 2013: Large contribution of natural aerosols to uncertainty in indirect forcing. Nature, 503, 6771, https://doi.org/10.1038/nature12674.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cochran, R. E., and Coauthors, 2016: Analysis of organic anionic surfactants in fine and coarse fractions of freshly emitted sea spray aerosol. Environ. Sci. Technol., 50, 24772486, https://doi.org/10.1021/acs.est.5b04053.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, D. B., and Coauthors, 2014: Direct aerosol chemical composition measurements to evaluate the physicochemical differences between controlled sea spray aerosol generation schemes. Atmos. Meas. Tech., 7, 36673683, https://doi.org/10.5194/amt-7-3667-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cunliffe, M., and Coauthors, 2013: Sea surface microlayers: A unified physicochemical and biological perspective of the air–ocean interface. Prog. Oceanogr., 109, 104116, https://doi.org/10.1016/j.pocean.2012.08.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Czerwieniec, G. A., and Coauthors, 2005: Stable isotope labeling of entire Bacillus atrophaeus spores and vegetative cells using bioaerosol mass spectrometry. Anal. Chem., 77, 10811087, https://doi.org/10.1021/ac0488098.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Coauthors, 2016: Sea spray aerosol as a unique source of ice nucleating particles. Proc. Natl. Acad. Sci. USA, 113, 57975803, https://doi.org/10.1073/pnas.1514034112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Failor, K. C., D. G. Schmale, B. A. Vinatzer, and C. L. Monteil, 2017: Ice nucleation active bacteria in precipitation are genetically diverse and nucleate ice by employing different mechanisms. ISME J., 11, 27402753, https://doi.org/10.1038/ismej.2017.124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fall, R., and R. C. Schnell, 1985: Association of an ice-nucleating pseudomonad with cultures of the marine dinoflagellate, Heterocapsa niei. J. Mar. Res., 43, 257265, https://doi.org/10.1357/002224085788437370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fergenson, D. P., and Coauthors, 2004: Reagentless detection and classification of individual bioaerosol particles in seconds. Anal. Chem., 76, 373378, https://doi.org/10.1021/ac034467e.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fisher, R. A., 1922: On the interpretation of χ2 from contingency tables, and the calculation of P. J. Roy. Stat. Soc., 85, 8794.

  • Franklin, C. N., Z. Sun, D. Bi, M. Dix, H. Yan, and A. Bodas-Salcedo, 2013: Evaluation of clouds in ACCESS using the satellite simulator package COSP: Global, seasonal, and regional cloud properties. J. Geophys. Res. Atmos., 118, 732748, https://doi.org/10.1029/2012JD018469.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gantt, B., and N. Meskhidze, 2013: The physical and chemical characteristics of marine primary organic aerosol: A review. Atmos. Chem. Phys., 13, 39793996, https://doi.org/10.5194/acp-13-3979-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gantt, B., N. Meskhidze, M. C. Facchini, M. Rinaldi, D. Ceburnis, and C. D. O’Dowd, 2011: Wind speed dependent size-resolved parameterization for the organic mass fraction of sea spray aerosol. Atmos. Chem. Phys., 11, 87778790, https://doi.org/10.5194/acp-11-8777-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gard, E., J. E. Mayer, B. D. Morrical, T. Dienes, D. P. Fergenson, and K. A. Prather, 1997: Real-time analysis of individual atmospheric aerosol particles: Design and performance of a portable ATOFMS. Anal. Chem., 69, 40834091, https://doi.org/10.1021/ac970540n.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gavish, M., R. Popovitz-Biro, M. Lahav, and L. Leiserowitz, 1990: Ice nucleation by alcohols arranged in monolayers at the surface of water drops. Science, 250, 973975, https://doi.org/10.1126/science.250.4983.973.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guasco, T. L., and Coauthors, 2014: Transition metal associations with primary biological particles in sea spray aerosol generated in a wave channel. Environ. Sci. Technol., 48, 13241333, https://doi.org/10.1021/es403203d.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, T. C. J., B. F. Moffett, P. J. DeMott, D. G. Georgakopoulos, W. L. Stump, and G. D. Franc, 2014: Measurement of ice nucleation-active bacteria on plants and in precipitation by quantitative PCR. Appl. Environ. Microbiol., 80, 12561267, https://doi.org/10.1128/AEM.02967-13.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hiranuma, N., and Coauthors, 2015: A comprehensive laboratory study on the immersion freezing behavior of illite NX particles: A comparison of 17 ice nucleation measurement techniques. Atmos. Chem. Phys., 15, 24892518, https://doi.org/10.5194/acp-15-2489-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffman, E. J., and R. Duce, 1974: The organic carbon content of marine aerosols collected on Bermuda. J. Geophys. Res., 79, 44744477, https://doi.org/10.1029/JC079i030p04474.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y., A. Protat, S. T. Siems, and M. J. Manton, 2015: A-Train observations of maritime midlatitude storm-track cloud systems: Comparing the Southern Ocean against the North Atlantic. J. Climate, 28, 19201939, https://doi.org/10.1175/JCLI-D-14-00169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Irish, V. E., and Coauthors, 2017: Ice nucleating particles in Canadian Arctic sea-surface microlayer and bulk seawater. Atmos. Chem. Phys., 17, 10 58310 595, https://doi.org/10.5194/acp-17-10583-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Junge, K., and B. D. Swanson, 2008: High-resolution ice nucleation spectra of sea-ice bacteria: Implications for cloud formation and life in frozen environments. Biogeosciences, 5, 865873, https://doi.org/10.5194/bg-5-865-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knopf, D. A., and S. M. Forrester, 2011: Freezing of water and aqueous NaCl droplets coated by organic monolayers as a function of surfactant properties and water activity. J. Phys. Chem., 115, 55795591, https://doi.org/10.1021/jp2014644.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knopf, D. A., P. A. Alpert, B. Wang, and J. Y. Aller, 2011: Stimulation of ice nucleation by marine diatoms. Nat. Geosci., 4, 8890, https://doi.org/10.1038/ngeo1037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leck, C., and E. K. Bigg, 2007: Comparison of sources and nature of the tropical aerosol with the summer high Arctic aerosol. Tellus, 60B, 118126, https://doi.org/10.1111/j.1600-0889.2007.00315.x.

    • Search Google Scholar
    • Export Citation
  • Lee, C., and Coauthors, 2015: Advancing model systems for fundamental laboratory studies of sea spray aerosol using the microbial loop. J. Phys. Chem., 119A, 88608870, https://doi.org/10.1021/acs.jpca.5b03488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCluskey, C. S., and Coauthors, 2017: A dynamic link between ice nucleating particles released in nascent sea spray aerosol and oceanic biological activity during two mesocosm experiments. J. Atmos. Sci., 74, 151166, https://doi.org/10.1175/JAS-D-16-0087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCoy, D. T., D. L. Hartmann, M. D. Zelinka, P. Ceppi, and D. P. Grosvenor, 2015: Mixed-phase cloud physics and Southern Ocean cloud feedback in climate models. J. Geophys. Res. Atmos., 120, 95399554, https://doi.org/10.1002/2015JD023603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyazaki, Y., K. Kawamura, and M. Sawano, 2010: Size distributions and chemical characterization of water-soluble organic aerosols over the western North Pacific in summer. J. Geophys. Res., 115, D23210, https://doi.org/10.1029/2010JD014439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Dowd, C. D., and Coauthors, 2004: Biogenically driven organic contributions to marine aerosol. Nature, 431, 676680, https://doi.org/10.1038/nature02959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Dowd, C. D., and Coauthors, 2015: Connecting marine productivity to sea-spray via nanoscale biological processes: Phytoplankton dance or death disco? Sci. Rep., 5, 14883, https://doi.org/10.1038/srep14883.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oppo, C., S. Bellandi, N. Degli Innocenti, A. M. Stortini, G. Loglio, E. Schiavuta, and R. Cini, 1999: Surfactant components of marine organic matter as agents for biogeochemical fractionation and pollutant transport via marine aerosols. Mar. Chem., 63, 235253, https://doi.org/10.1016/S0304-4203(98)00065-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ovadnevaite, J., D. Ceburnis, M. Canagaratna, H. Berresheim, J. Bialek, G. Martucci, D. R. Worsnop, and C. O’Dowd, 2012: On the effect of wind speed on submicron sea salt mass concentrations and source fluxes. J. Geophys. Res., 117, D16201, https://doi.org/10.1029/2011JD017379.

    • Search Google Scholar
    • Export Citation
  • Patterson, J. P., and Coauthors, 2016: Sea spray aerosol structure and composition using cryogenic transmission electron microscopy. ACS Cent. Sci., 2, 4047, https://doi.org/10.1021/acscentsci.5b00344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phelps, P., T. H. Giddings, M. Prochoda, and R. Fall, 1986: Release of cell-free ice nuclei by Erwinia herbicola. J. Bacteriol., 167, 496502, https://doi.org/10.1128/jb.167.2.496-502.1986.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Popovitz-Biro, R., M. Lahav, and L. Leiserowitz, 1991: Ice nucleation: A test to probe the packing of amphiphilic alcohols at the oil-water interface. J. Amer. Chem. Soc., 113, 89438944, https://doi.org/10.1021/ja00023a050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Popovitz-Biro, R., J. Wang, J. Majewski, E. Shavit, L. Leiserowitz, and M. Lahav, 1994: Induced freezing of supercooled water into ice by self-assembled crystalline monolayers of amphiphilic alcohols at the air-water interface. J. Amer. Chem. Soc., 116, 11791191, https://doi.org/10.1021/ja00083a003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pósfai, M., J. Li, J. R. Anderson, and P. R. Buseck, 2003: Aerosol bacteria over the Southern Ocean during ACE-1. Atmos. Res., 66, 231240, https://doi.org/10.1016/S0169-8095(03)00039-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prather, K. A., and Coauthors, 2013: Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosol. Proc. Natl. Acad. Sci. USA, 110, 75507555, https://doi.org/10.1073/pnas.1300262110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prenni, A. J., and Coauthors, 2009: Relative roles of biogenic emissions and Saharan dust as ice nuclei in the Amazon basin. Nat. Geosci., 2, 402405, https://doi.org/10.1038/ngeo517.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2nd ed. Springer, 997 pp.

  • Pummer, B. G., and Coauthors, 2015: Ice nucleation by water-soluble macromolecules. Atmos. Chem. Phys., 15, 40774091, https://doi.org/10.5194/acp-15-4077-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, Y., N. Odendahl, A. Hudait, R. H. Mason, A. K. Bertram, F. Paesani, P. J. DeMott, and V. Molinero, 2017: Ice nucleation efficiency of hydroxylated organic surfaces is controlled by their structural fluctuations and mismatch to ice. J. Amer. Chem. Soc., 139, 30523064, https://doi.org/10.1021/jacs.6b12210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rinaldi, M., and Coauthors, 2009: On the representativeness of coastal aerosol studies to open ocean studies: Mace Head—A case study. Atmos. Chem. Phys., 9, 96359646, https://doi.org/10.5194/acp-9-9635-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, D. C., P. J. DeMott, S. M. Kreidenweis, and Y. Chen, 1998: Measurements of ice nucleating aerosols during SUCCESS. Geophys. Res. Lett., 25, 13831386, https://doi.org/10.1029/97GL03478.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, D. C., P. J. DeMott, S. M. Kreidenweis, and Y. Chen, 2001: A continuous-flow diffusion chamber for airborne measurements of ice nuclei. J. Atmos. Oceanic Technol., 18, 725741, https://doi.org/10.1175/1520-0426(2001)018<0725:ACFDCF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosinski, J., P. L. Haagenson, C. T. Nagamoto, and F. Parungo, 1987: Nature of ice-forming nuclei in marine air masses. J. Aerosol Sci., 18, 291309, https://doi.org/10.1016/0021-8502(87)90024-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schnell, R. C., 1977: Ice nuclei in seawater, fog water and marine air off the coast of Nova Scotia: Summer, 1975. J. Atmos. Sci., 34, 12991305, https://doi.org/10.1175/1520-0469(1977)034<1299:INISFW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schnell, R. C., and G. Vali, 1974: Freezing nuclei in marine waters. Tellus, 27, 321323, https://doi.org/10.3402/tellusa.v27i3.9911.

  • Schnell, R. C., and G. Vali, 1976: Biogenic ice nuclei: Part I. Terrestrial and marine sources. J. Atmos. Sci., 33, 15541564, https://doi.org/10.1175/1520-0469(1976)033<1554:BINPIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stokes, M. D., G. B. Deane, K. Prather, T. H. Bertram, M. J. Ruppel, O. S. Ryder, J. M. Brady, and D. Zhao, 2013: A marine aerosol reference tank system as a breaking wave analogue for the production of foam and sea-spray aerosols. Atmos. Meas. Tech., 6, 10851094, https://doi.org/10.5194/amt-6-1085-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sultana, C. M., D. B. Collins, and K. A. Prather, 2017a: The effect of structural heterogeneity in chemical composition on online single particle mass spectrometry analysis of sea spray aerosol particles. Environ. Sci. Technol., 51, 36603668, https://doi.org/10.1021/acs.est.6b06399.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sultana, C. M., G. Cornwell, P. Rodriguez, and K. A. Prather, 2017b: FATES: A flexible analysis toolkit for the exploration of single-particle mass spectrometer data. Atmos. Meas. Tech., 10, 13231334, https://doi.org/10.5194/amt-10-1323-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sultana, C. M., H. Al-Mashat, and K. A. Prather, 2017c: Expanding single particle mass spectrometer analyses for the identification of microbe signatures in sea spray aerosols. Anal. Chem., 89, 10 16210 170, https://doi.org/10.1021/acs.analchem.7b00933.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tobo, Y., P. J. DeMott, T. C. J. Hill, A. J. Prenni, N. G. Swoboda-Colberg, G. D. Franc, and S. M. Kreidenweis, 2014: Organic matter matters for ice nuclei of agricultural soil origin. Atmos. Chem. Phys., 14, 85218531, https://doi.org/10.5194/acp-14-8521-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vali, G., 1971: Quantitative evaluation of experimental results on the heterogeneous freezing nucleation of supercooled liquids. J. Atmos. Sci., 28, 402409, https://doi.org/10.1175/1520-0469(1971)028<0402:QEOERA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vali, G., P. J. DeMott, O. Möhler, and T. F. Whale, 2015: Technical note: A proposal for ice nucleation terminology. Atmos. Chem. Phys., 15, 10 26310 270, https://doi.org/10.5194/acp-15-10263-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verheggen, B., and Coauthors, 2007: Aerosol partitioning between the interstitial and the condensed phase in mixed-phase clouds. J. Geophys. Res., 112, D23202, https://doi.org/10.1029/2007JD008714.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., and Coauthors, 2015: Microbial control of sea spray aerosol composition: A tale of two blooms. ACS Cent. Sci., 1, 124131, https://doi.org/10.1021/acscentsci.5b00148.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warren, G. J., 1995. Identification and analysis of INA genes and proteins. Biological Ice Nucleation and Its Applications, R. E. Lee, G. J. Warren, and L. V. Gusta, Eds., American Phyotpathological Society Press, 85–99.

  • Wilson, T. W., and Coauthors, 2015: A marine biogenic source of atmospheric ice-nucleating particles. Nature, 525, 234238, https://doi.org/10.1038/nature14986.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., L. Liu, Z. Wu, J. Li, and H. Ding, 1998: Physicochemical studies of the sea surface microlayer: I. Thickness of the sea surface microlayer and its experimental determination. J. Colloid Interface Sci., 204, 294299, https://doi.org/10.1006/jcis.1998.5538.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1334 604 45
PDF Downloads 841 266 16