Assessment of Conditional Symmetric Instability from Global Reanalysis Data

Ting-Chen Chen Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Ting-Chen Chen in
Current site
Google Scholar
PubMed
Close
,
M. K. Yau Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by M. K. Yau in
Current site
Google Scholar
PubMed
Close
, and
Daniel J. Kirshbaum Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Daniel J. Kirshbaum in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Slantwise convection, the process by which moist symmetric instability is released, has often been linked to banded clouds and precipitation, especially in frontal zones within extratropical cyclones. Studies also suggest that the latent heat release associated with slantwise convection can lead to a spinup of surface frontogenesis, which can enhance the rapid intensification of extratropical cyclones. However, most of these studies considered only local areas or short time durations. In this study, we provide a novel statistical investigation of the global climatology of the potential occurrence of slantwise convection, in terms of conditional symmetric instability, and its relationship with precipitating systems. Using the 6-hourly ERA-Interim, two different indices are calculated, namely, slantwise convective available potential energy (SCAPE) and vertically integrated extent of realizable symmetric instability (VRS), to assess the likelihood of occurrence of slantwise convection around the globe. The degree of association is quantified between these indices and the observed surface precipitation as well as the cyclone activity. The susceptibility of midlatitude cyclones to slantwise convection at different stages of their life cycle is also investigated. As compared to the nonexplosive cyclone cases, the time evolution of SCAPE and VRS within rapidly deepening cyclones exhibit higher values before, and a more significant drop after, the onset of rapid intensification, supporting the idea that the release of symmetric instability might contribute to the intensification of storms.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ting-Chen Chen, ting-chen.chen@mail.mcgill.ca

Abstract

Slantwise convection, the process by which moist symmetric instability is released, has often been linked to banded clouds and precipitation, especially in frontal zones within extratropical cyclones. Studies also suggest that the latent heat release associated with slantwise convection can lead to a spinup of surface frontogenesis, which can enhance the rapid intensification of extratropical cyclones. However, most of these studies considered only local areas or short time durations. In this study, we provide a novel statistical investigation of the global climatology of the potential occurrence of slantwise convection, in terms of conditional symmetric instability, and its relationship with precipitating systems. Using the 6-hourly ERA-Interim, two different indices are calculated, namely, slantwise convective available potential energy (SCAPE) and vertically integrated extent of realizable symmetric instability (VRS), to assess the likelihood of occurrence of slantwise convection around the globe. The degree of association is quantified between these indices and the observed surface precipitation as well as the cyclone activity. The susceptibility of midlatitude cyclones to slantwise convection at different stages of their life cycle is also investigated. As compared to the nonexplosive cyclone cases, the time evolution of SCAPE and VRS within rapidly deepening cyclones exhibit higher values before, and a more significant drop after, the onset of rapid intensification, supporting the idea that the release of symmetric instability might contribute to the intensification of storms.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ting-Chen Chen, ting-chen.chen@mail.mcgill.ca
Save
  • Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balasubramanian, G., and M. K. Yau, 1994: Baroclinic instability in a two-layer model with parameterized slantwise convection. J. Atmos. Sci., 51, 971990, https://doi.org/10.1175/1520-0469(1994)051<0971:BIIATL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., K. I. Hodges, and E. Roeckner, 2006: Storm tracks and climate change. J. Climate, 19, 35183543, https://doi.org/10.1175/JCLI3815.1.

  • Bennetts, D. A., and B. J. Hoskins, 1979: Conditional symmetric instability—A possible explanation for frontal rainbands. Quart. J. Roy. Meteor. Soc., 105, 945962, https://doi.org/10.1002/qj.49710544615.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., J. P. Nicolas, and A. J. Monaghan, 2011: An assessment of precipitation changes over Antarctica and the Southern Ocean since 1989 in contemporary global reanalyses. J. Climate, 24, 41894209, https://doi.org/10.1175/2011JCLI4074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., J. W. Lee, and J. P. Craven, 2003: The spatial distribution of severe thunderstorm and tornado environments frim global reanalysis data. Atmos. Res., 67–68, 7394, https://doi.org/10.1016/S0169-8095(03)00045-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dixon, R. S., K. A. Browning, and G. J. Shutts, 2002: The relation of moist symmetric instability and upper-level potential-vorticity anomalies to the observed evolution of cloud heads. Quart. J. Roy. Meteor. Soc., 128, 839859, https://doi.org/10.1256/0035900021643719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1, 3352, https://doi.org/10.3402/tellusa.v1i3.8507.

  • Emanuel, K. A., 1983a: The Lagrangian parcel dynamics of moist symmetric instability. J. Atmos. Sci., 40, 23682376, https://doi.org/10.1175/1520-0469(1983)040<2368:TLPDOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1983b: On assessing local conditional symmetric instability from atmospheric soundings. Mon. Wea. Rev., 111, 20162033, https://doi.org/10.1175/1520-0493(1983)111<2016:OALCSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glinton, M., 2013: The role of conditional symmetric instability in numerical weather prediction. Ph.D. thesis, University of Reading, 251 pp.

  • Glinton, M., S. L. Gray, J. M. Chagnon, and C. J. Morcrette, 2017: Modulation of precipitation by conditional symmetric instability release. Atmos. Res., 185, 186201, https://doi.org/10.1016/j.atmosres.2016.10.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, S. L., and A. J. Thorpe, 2001: Parcel theory in three dimensions and the calculation of SCAPE. Mon. Wea. Rev., 129, 16561672, https://doi.org/10.1175/1520-0493(2001)129<1656:PTITDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, S. L., O. Martínez-Alvarado, L. H. Baker, and P. A. Clark, 2011: Conditional symmetric instability in sting-jet storms. Quart. J. Roy. Meteor. Soc., 137, 14821500, https://doi.org/10.1002/qj.859.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawcroft, M. K., L. C. Shaffrey, K. I. Hodges, and H. F. Dacre, 2016: Can climate models represent the precipitation associated with extratropical cyclones? Climate Dyn., 47, 679695, https://doi.org/10.1007/s00382-015-2863-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. Elsevier, 535 pp.

  • Hoskins, B. J., 1974: The role of potential vorticity in symmetric stability and instability. Quart. J. Roy. Meteor. Soc., 100, 480482, https://doi.org/10.1002/qj.49710042520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., 1991: A numerical study of slantwise convection. M.S. thesis, Dept. of Meteorology, McGill University, 73 pp.

  • Kållberg, P. W., 2011: Forecast drift in ERA-Interim. ECMWF ERA Rep. Series 10, 11 pp., https://www.ecmwf.int/sites/default/files/elibrary/2011/10381-forecast-drift-era-interim.pdf.

  • Korty, R. L., and T. Schneider, 2007: A climatology of the tropospheric thermal stratification using saturation potential vorticity. J. Climate, 20, 59775991, https://doi.org/10.1175/2007JCLI1788.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, Y.-H., M. A. Shapiro, and E. G. Donall, 1991: The interaction between baroclinic and diabatic processes in a numerical simulation of a rapidly intensifying extratropical marine cyclone. Mon. Wea. Rev., 119, 368384, https://doi.org/10.1175/1520-0493(1991)119<0368:TIBBAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, L., 2000: On the parameterization of slantwise convection in general circulation models. Ph.D. thesis, McGill University, 175 pp.

  • Markowski, P. M., and Y. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. Wiley-Blackwell, 424 pp.

    • Crossref
    • Export Citation
  • Marsh, P. T., H. E. Brooks, and D. J. Karoly, 2007: Assessment of the severe weather environment in North America simulated by a global climate model. Atmos. Sci. Lett., 8, 100106, https://doi.org/10.1002/asl.159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monkam, D., 2002: Convective available potential energy (CAPE) in northern Africa and tropical Atlantic and study of its connections with rainfall in central and West Africa during summer 1985. Atmos. Res., 62, 125147, https://doi.org/10.1016/S0169-8095(02)00006-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morcrette, C. J., 2004: Radar and modelling studies of upright and slantwise convection. Ph.D. thesis, University of Reading, 172 pp.

  • O’Neill, M. E., and Y. Kaspi, 2016: Slantwise convection on fluid planets. Geophys. Res. Lett., 43, 10 61110 620, https://doi.org/10.1002/2016GL071188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reuter, G. W., and M. K. Yau, 1990: Observations of slantwise convective instability in winter cyclones. Mon. Wea. Rev., 118, 447458, https://doi.org/10.1175/1520-0493(1990)118<0447:OOSCII>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reuter, G. W., and M. K. Yau, 1993: Assessment of slantwise convection in ERICA cyclones. Mon. Wea. Rev., 121, 375386, https://doi.org/10.1175/1520-0493(1993)121<0375:AOSCIE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riemann-Campe, K., L. Fraedrich, and F. Lunkeit, 2009: Global climatology of convective available potential energy (CAPE) and convective inhibition (CIN) in ERA-40 reanalysis. Atmos. Res., 93, 534545, https://doi.org/10.1016/j.atmosres.2008.09.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanders, F., and J. R. Gyakum, 1980: Synoptic-dynamic climatology of the “bomb.” Mon. Wea. Rev., 108, 15891606, https://doi.org/10.1175/1520-0493(1980)108<1589:SDCOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., and P. N. Schumacher, 1999: The use and misuse of conditional symmetric instability. Mon. Wea. Rev., 127, 27092732, https://doi.org/10.1175/1520-0493(1999)127<2709:TUAMOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seltzer, M. A., R. E. Passarelli, and K. A. Emanuel, 1985: The possible role of symmetric instability in the formation of precipitation bands. J. Atmos. Sci., 42, 22072219, https://doi.org/10.1175/1520-0469(1985)042<2207:TPROSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., 1995: Climatological aspects of cyclone development and decay in the Arctic. Atmos.–Ocean, 33, 123, https://doi.org/10.1080/07055900.1995.9649522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., 2009: Northern hemisphere cyclone locations and characteristics from NCEP/NCAR reanalysis data, version 1. National Snow and Ice Data Center, Boulder, CO, digital media, accessed 25 October 2016, https://nsidc.org/data/nsidc-0423.

  • Serreze, M. C., F. Carse, R. G. Barry, and J. C. Rogers, 1997: Icelandic low cyclone activity: Climatological features, linkages with the NAO, and relationships with recent changes in the Northern Hemisphere circulation. J. Climate, 10, 453464, https://doi.org/10.1175/1520-0442(1997)010<0453:ILCACF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shutts, G. J., 1990a: The dynamical structure of some North Atlantic depressions simulated by the fine-mesh model. Met Office Science Note 17, 75 pp.

  • Shutts, G. J., 1990b: SCAPE charts from numerical weather prediction model fields. Mon. Wea. Rev., 118, 27452751, https://doi.org/10.1175/1520-0493(1990)118<2745:SCFNWP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., K. M. Willett, P. D. Jones, P. W. Thorne, and D. P. Dee, 2010: Low-frequency variations in surface atmospheric humidity, temperature, and precipitation: Inferences from reanalyses and monthly gridded observational data sets. J. Geophys. Res., 115, D01110, https://doi.org/10.1029/2009JD012442.

    • Search Google Scholar
    • Export Citation
  • Stone, P. H., 1966: On non-geostrophic baroclinic stability. J. Atmos. Sci., 23, 390400, https://doi.org/10.1175/1520-0469(1966)023<0390:ONGBS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stone, P. H., 1967: An application of baroclinic stability theory to the dynamics of the Jovian atmosphere. J. Atmos. Sci., 24, 642652, https://doi.org/10.1175/1520-0469(1967)024<0642:AAOBST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stone, P. H., 1971: The symmetric baroclinic instability of an equatorial current. Geophys. Fluid Dyn., 2, 147164, https://doi.org/10.1080/03091927108236055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Subrahmanyam, K. V., K. K. Kumar, and A. N. Babu, 2015: Phase relation between CAPE and precipitation at diurnal scales over the Indian summer monsoon region. Atmos. Sci. Lett., 16, 346354, https://doi.org/10.1002/asl2.566.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tamarin, T., and Y. Kaspi, 2017: Mechanisms controlling the downstream poleward deflection of midlatitude storm tracks. J. Atmos. Sci., 74, 553572, https://doi.org/10.1175/JAS-D-16-0122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, A. J., and K. A. Emanuel, 1985: Frontogenesis in the presence of small stability to slantwise convection. J. Atmos. Sci., 42, 18091824, https://doi.org/10.1175/1520-0469(1985)042<1809:FITPOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Q., 1986: Conditional symmetric instability and mesoscale rainbands. Quart. J. Roy. Meteor. Soc., 112, 315334, https://doi.org/10.1002/qj.49711247203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zamora, R. A., R. L. Korty, and M. Huber, 2016: Thermal stratification in simulations of warm climates: A climatology using saturation potential vorticity. J. Climate, 29, 50835102, https://doi.org/10.1175/JCLI-D-15-0785.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 538 142 21
PDF Downloads 611 120 21