Dust Impacts on the 2012 Hurricane Nadine Track during the NASA HS3 Field Campaign

E. P. Nowottnick Goddard Earth Sciences Technology and Research/Universities Space Research Association, Columbia, Maryland
Atmospheric Chemistry and Dynamics Laboratory, NASA GSFC, Greenbelt, Maryland

Search for other papers by E. P. Nowottnick in
Current site
Google Scholar
PubMed
Close
,
P. R. Colarco Atmospheric Chemistry and Dynamics Laboratory, NASA GSFC, Greenbelt, Maryland

Search for other papers by P. R. Colarco in
Current site
Google Scholar
PubMed
Close
,
S. A. Braun Mesoscale Atmospheric Processes Laboratory, NASA GSFC, Greenbelt, Maryland

Search for other papers by S. A. Braun in
Current site
Google Scholar
PubMed
Close
,
D. O. Barahona Global Modeling and Assimilation Office, NASA GSFC, Greenbelt, Maryland

Search for other papers by D. O. Barahona in
Current site
Google Scholar
PubMed
Close
,
A. da Silva Global Modeling and Assimilation Office, NASA GSFC, Greenbelt, Maryland

Search for other papers by A. da Silva in
Current site
Google Scholar
PubMed
Close
,
D. L. Hlavka Mesoscale Atmospheric Processes Laboratory, NASA GSFC, Greenbelt, Maryland
Science Systems and Applications, Inc., Lanham, Maryland

Search for other papers by D. L. Hlavka in
Current site
Google Scholar
PubMed
Close
,
M. J. McGill Mesoscale Atmospheric Processes Laboratory, NASA GSFC, Greenbelt, Maryland

Search for other papers by M. J. McGill in
Current site
Google Scholar
PubMed
Close
, and
J. R. Spackman NASA Ames Research Center, Moffett Field, California

Search for other papers by J. R. Spackman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

During the 2012 deployment of the NASA Hurricane and Severe Storm Sentinel (HS3) field campaign, several flights were dedicated to investigating Hurricane Nadine. Hurricane Nadine developed in close proximity to the dust-laden Saharan air layer and is the fourth-longest-lived Atlantic hurricane on record, experiencing two strengthening and weakening periods during its 22-day total life cycle as a tropical cyclone. In this study, the NASA GEOS-5 atmospheric general circulation model and data assimilation system was used to simulate the impacts of dust during the first intensification and weakening phases of Hurricane Nadine using a series of GEOS-5 forecasts initialized during Nadine’s intensification phase (12 September 2012). The forecasts explore a hierarchy of aerosol interactions within the model: no aerosol interaction, aerosol–radiation interactions, and aerosol–radiation and aerosol–cloud interactions simultaneously, as well as variations in assumed dust optical properties. When only aerosol–radiation interactions are included, Nadine’s track exhibits sensitivity to dust shortwave absorption, as a more absorbing dust introduces a shortwave temperature perturbation that impacts Nadine’s structure and steering flow, leading to a northward track divergence after 5 days of simulation time. When aerosol–cloud interactions are added, the track exhibits little sensitivity to dust optical properties. This result is attributed to enhanced longwave atmospheric cooling from clouds that counters shortwave atmospheric warming by dust surrounding Nadine, suggesting that aerosol–cloud interactions are a more significant influence on Nadine’s track than aerosol–radiation interactions. These findings demonstrate that tropical systems, specifically their track, can be impacted by dust interaction with the atmosphere.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-17-0237.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Edward P. Nowottnick, edward.p.nowottnick@nasa.gov

This article is included in the NASA Hurricane Severe Storm Sentinel (HS3) special collection.

Abstract

During the 2012 deployment of the NASA Hurricane and Severe Storm Sentinel (HS3) field campaign, several flights were dedicated to investigating Hurricane Nadine. Hurricane Nadine developed in close proximity to the dust-laden Saharan air layer and is the fourth-longest-lived Atlantic hurricane on record, experiencing two strengthening and weakening periods during its 22-day total life cycle as a tropical cyclone. In this study, the NASA GEOS-5 atmospheric general circulation model and data assimilation system was used to simulate the impacts of dust during the first intensification and weakening phases of Hurricane Nadine using a series of GEOS-5 forecasts initialized during Nadine’s intensification phase (12 September 2012). The forecasts explore a hierarchy of aerosol interactions within the model: no aerosol interaction, aerosol–radiation interactions, and aerosol–radiation and aerosol–cloud interactions simultaneously, as well as variations in assumed dust optical properties. When only aerosol–radiation interactions are included, Nadine’s track exhibits sensitivity to dust shortwave absorption, as a more absorbing dust introduces a shortwave temperature perturbation that impacts Nadine’s structure and steering flow, leading to a northward track divergence after 5 days of simulation time. When aerosol–cloud interactions are added, the track exhibits little sensitivity to dust optical properties. This result is attributed to enhanced longwave atmospheric cooling from clouds that counters shortwave atmospheric warming by dust surrounding Nadine, suggesting that aerosol–cloud interactions are a more significant influence on Nadine’s track than aerosol–radiation interactions. These findings demonstrate that tropical systems, specifically their track, can be impacted by dust interaction with the atmosphere.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-17-0237.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Edward P. Nowottnick, edward.p.nowottnick@nasa.gov

This article is included in the NASA Hurricane Severe Storm Sentinel (HS3) special collection.

Supplementary Materials

    • Supplemental Materials (ZIP 11.28 MB)
Save
  • Balkanski, Y., M. Schulz, T. Claquin, and S. Guibert, 2007: Reevaluation of mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data. Atmos. Chem. Phys., 7, 8195, https://doi.org/10.5194/acp-7-81-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barahona, D., J. Rodriguez, and A. Nenes, 2010: Sensitivity of the global distribution of cirrus ice crystal concentration to heterogeneous freezing. J. Geophys. Res., 115, D23213, https://doi.org/10.1029/2010JD014273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barahona, D., A. Molod, J. Bacmeister, A. Nenes, A. Gettelman, H. Morrison, V. Phillips, and A. Eichmann, 2014: Development of two-moment cloud microphysics for liquid and ice within the NASA Goddard Earth Observing System Model (GEOS-5). Geosci. Model Dev., 7, 17331766, https://doi.org/10.5194/gmd-7-1733-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., and Coauthors, 2011: COSP: Satellite simulation software for model assessment. Bull. Amer. Meteor. Soc., 92, 10231043, https://doi.org/10.1175/2011BAMS2856.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., J. A. Sippel, C.-L. Shie, and R. A. Boller, 2013: The evolution and role of the Saharan air layer during Hurricane Helene (2006). Mon. Wea. Rev., 141, 42694295, https://doi.org/10.1175/MWR-D-13-00045.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., P. A. Newman, and G. M. Heymsfield, 2016: NASA’s hurricane and severe storm sentinel (HS3) investigation. Bull. Amer. Meteor. Soc., 97, 20852102, https://doi.org/10.1175/BAMS-D-15-00186.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretl, S., P. Reutter, C. C. Raible, S. Ferrachat, C. S. Poberaj, L. E. Revell, and U. Lohmann, 2015: The influence of absorbed solar radiation by Saharan dust on hurricane genesis. J. Geophys. Res. Atmos., 120, 19021917, https://doi.org/10.1002/2014JD022441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buchard, V., and Coauthors, 2015: Using OMI aerosol index and aerosol absorption optical depth to evaluate the NASA MERRA aerosol reanalysis. Atmos. Chem. Phys., 15, 57435760, https://doi.org/10.5194/acp-15-5743-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buchard, V., and Coauthors, 2017: The MERRA-2 aerosol reanalysis, 1980 onward. Part II: Evaluation and case studies. J. Climate, 30, 68516872, https://doi.org/10.1175/JCLI-D-16-0613.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burpee, R. W., 1972: The origin and structure of easterly waves in the lower troposphere of North Africa. J. Atmos. Sci., 29, 7790, https://doi.org/10.1175/1520-0469(1972)029<0077:TOASOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., and J. M. Prospero, 1972: The large-scale movement of Saharan air outbreaks over the northern equatorial Atlantic. J. Appl. Meteor., 11, 283297, https://doi.org/10.1175/1520-0450(1972)011<0283:TLSMOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, C. J. C., and W. M. Gray, 1982: Tropical cyclone movement and surrounding flow relationships. Mon. Wea. Rev., 110, 13541374, https://doi.org/10.1175/1520-0493(1982)110<1354:TCMASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., S.-Y. Wang, and A. J. Clark, 2008: North Atlantic hurricanes contributed by African easterly waves north and south of the African easterly jet. J. Climate, 21, 67676776, https://doi.org/10.1175/2008JCLI2523.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chin, M., and Coauthors, 2002: Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements. J. Atmos. Sci., 59, 461483, https://doi.org/10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., and M. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech. Memo. 104606, Vol. 3, Tech. Rep. Series on Global Modeling and Data Assimilation, 85 pp.

  • Chou, M.-D., and M. Suarez, 1999: A solar radiation parameterization for atmospheric studies. NASA Tech. Memo. TM-1999-10460, Vol. 15, Tech. Rep. Series on Global Modeling and Data Assimilation, 40 pp.

  • Chou, M.-D., M. Suarez, X.-Z. Liang, and M.M.-H. Yan, 2001: A thermal infrared radiation parameterization for atmospheric studies. NASA Tech. Memo. NASA/TM-2001-104606, Vol. 19, NASA Tech. Rep. Series on Global Modeling and Data Assimilation, 56 pp.

  • Colarco, P., A. da Silva, M. Chin, and T. Diehl, 2010: Online simulations of global aerosol distributions in the NASA GEOS-4 model and comparisons to satellite and ground-based aerosol optical depth. J. Geophys. Res., 115, D14207, https://doi.org/10.1029/2009JD012820.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colarco, P., E. P. Nowottnick, C. A. Randles, B. Yi, P. Yang, K.-M. Kim, J. A. Smith, and C. G. Bardeen, 2014: Impact of radiatively interactive dust aerosols in the NASA GEOS-5 climate model: Sensitivity to dust particle shape and refractive index. J. Geophys. Res. Atmos., 119, 753786, https://doi.org/10.1002/2013JD020046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., K. Sassen, M. R. Poellot, D. Baumgardner, D. C. Rogers, S. D. Brooks, A. J. Prenni, and S. M. Kreidenweis, 2003: African dust aerosols as atmospheric ice nuclei. Geophys. Res. Lett., 30, 1732, https://doi.org/10.1029/2003GL017410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donlon, C. J., M. Martin, J. Stark, J. Roberts-Jones, E. Fiedler, and W. Wimmer, 2012: The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system. Remote Sens. Environ., 116, 140158, https://doi.org/10.1016/j.rse.2010.10.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., and C. S. Velden, 2004: The impact of the Saharan air layer on Atlantic tropical cyclone activity. Bull. Amer. Meteor. Soc., 85, 353365, https://doi.org/10.1175/BAMS-85-3-353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evan, A. T., J. Dunion, J. A. Foley, A. K. Heidinger, and C. S. Velden, 2006: New evidence for a relationship between Atlantic tropical cyclone activity and African dust outbreaks. Geophys. Res. Lett., 33, L19813, https://doi.org/10.1029/2006GL026408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evan, A. T., and Coauthors, 2008: Ocean temperature forcing by aerosols across the Atlantic tropical cyclone development region. Geochem. Geophys. Geosyst., 9, Q05V04, https://doi.org/10.1029/2007GC001774.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fiorino, M., and R. L. Elsberry, 1989: Some aspects of vortex structure related to tropical cyclone motion. J. Atmos. Sci., 46, 975990, https://doi.org/10.1175/1520-0469(1989)046<0975:SAOVSR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hess, M., P. Koepke, and I. Schult, 1998: Optical properties of aerosols and clouds: The software package OPAC. Bull. Amer. Meteor. Soc., 79, 831844, https://doi.org/10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hock, T. F., and J. L. Franklin, 1999: The NCAR GPS dropwindsonde. Bull. Amer. Meteor. Soc., 80, 407420, https://doi.org/10.1175/1520-0477(1999)080<0407:TNGD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenkins, G. S., and A. Pratt, 2008: Saharan dust, lightning and tropical cyclones in the eastern tropical Atlantic during NAMMA‐06. Geophys. Res. Lett., 35, L12804, https://doi.org/10.1029/2008GL033979.

    • Search Google Scholar
    • Export Citation
  • Jenkins, G. S., A. Pratt, and A. Heymsfield, 2008: Possible linkages between Saharan dust and tropical cyclone rain band invigoration in the eastern Atlantic during NAMMA‐06. Geophys. Res. Lett., 35, L08815, https://doi.org/10.1029/2008GL034072.

    • Search Google Scholar
    • Export Citation
  • Jones, A., and A. Slingo, 1996: Predicting cloud‐droplet effective radius and indirect sulphate aerosol forcing using a general circulation model. Quart. J. Roy. Meteor. Soc., 122, 15731595, https://doi.org/10.1002/qj.49712253506.

    • Search Google Scholar
    • Export Citation
  • Jones, C., N. Mahowald, and C. Luo, 2003: The role of easterly waves on African desert dust transport. J. Climate, 16, 36173628, https://doi.org/10.1175/1520-0442(2003)016<3617:TROEWO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karyampudi, V. M., and Coauthors, 1999: Validation of the Saharan dust plume conceptual model using lidar, Meteosat, and ECMWF data. Bull. Amer. Meteor. Soc., 80, 10451076, https://doi.org/10.1175/1520-0477(1999)080<1045:VOTSDP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., C. D. Thorncroft, and N. M. J. Hall, 2006: Three-dimensional structure and dynamics of African easterly waves. Part I: Observations. J. Atmos. Sci., 63, 22122230, https://doi.org/10.1175/JAS3741.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knippertz, P., and M. C. Todd, 2010: The central west Saharan dust hot spot and its relation to African easterly waves and extratropical disturbances. J. Geophys. Res., 115, D12117, https://doi.org/10.1029/2009JD012819.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, P., I. N. Sokolik, and A. Nenes, 2011: Cloud condensation nuclei activity and droplet activation kinetics of wet processed regional dust samples and minerals. Atmos. Chem. Phys., 11, 86618676, https://doi.org/10.5194/acp-11-8661-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lance, S., A. Nenes, and T. A. Rissman, 2004: Chemical and dynamical effects on cloud droplet number: Implications for estimates of the aerosol indirect effect. J. Geophys. Res., 109, D22208, https://doi.org/10.1029/2004JD004596.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., and K. M. Kim, 2007: Cooling of the Atlantic by Saharan dust. Geophys. Res. Lett., 34, L23811, https://doi.org/10.1029/2007GL031538.

  • Levy, R. C., L. A. Remer, R. G. Kleidman, S. Mattoo, C. Ichoku, R. Kahn, and T. F. Eck, 2010: Global evaluation of the collection 5 MODIS dark–target aerosol products over land. Atmos. Chem. Phys., 10, 10 39910 420, https://doi.org/10.5194/acp-10-10399-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGill, M., D. Hlavka, W. Hart, V. S. Scott, J. Spinhirne, and B. Schmid, 2002: Cloud physics lidar: Instrument description and initial measurement results. Appl. Opt., 41, 37253734, https://doi.org/10.1364/AO.41.003725.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meng, Z., P. Yang, G. W. Kattawar, L. Bi, K. N. Liou, and I. Laszlo, 2010: Single-scattering properties of tri-axial ellipsoidal mineral dust aerosols: A database for application to radiative transfer calculations. J. Aerosol Sci., 41, 501512, https://doi.org/10.1016/j.jaerosci.2010.02.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests. J. Climate, 21, 36423659, https://doi.org/10.1175/2008JCLI2105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munsell, E. B., J. A. Sippel, S. A. Braun, Y. Weng, and F. Zhang, 2015: Dynamics and predictability of Hurricane Nadine (2012) evaluated through convection-permitting ensemble analysis and forecasts. Mon. Wea. Rev., 143, 45144532, https://doi.org/10.1175/MWR-D-14-00358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nowottnick, E., P. Colarco, R. Ferrare, G. Chen, S. Ismail, B. Anderson, and E. Browell, 2010: Online simulations of mineral dust aerosol distributions: Comparisons to NAMMA observations and sensitivity to dust emission parameterization. J. Geophys. Res., 115, D03202, https://doi.org/10.1029/2009JD012692.

    • Search Google Scholar
    • Export Citation
  • Nowottnick, E., P. Colarco, A. da Silva, D. Hlavka, and M. McGill, 2011: The fate of Saharan dust across the Atlantic and implications for a central American dust barrier. Atmos. Chem. Phys., 11, 84158431, https://doi.org/10.5194/acp-11-8415-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nowottnick, E., P. Colarco, E. J. Welton, and A. da Silva, 2015: Use of the CALIOP vertical feature mask for evaluating global aerosol models. Atmos. Meas. Tech., 8, 36473669, https://doi.org/10.5194/amt-8-3647-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Putman, W. M., and M. Suarez, 2011: Cloud‐system resolving simulations with the NASA Goddard Earth Observing System global atmospheric model (GEOS‐5). Geophys. Res. Lett., 38, L16809, https://doi.org/10.1029/2011GL048438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quaas, J., O. Boucher, N. Bellouin, and S. Kinne, 2008: Satellite‐based estimate of the direct and indirect aerosol climate forcing. J. Geophys. Res., 113, D05204, https://doi.org/10.1029/2007JD008962.

    • Search Google Scholar
    • Export Citation
  • Randles, C. A., and Coauthors, 2017: The MERRA-2 aerosol reanalysis, 1980 onward. Part I: System description and data assimilation evaluation. J. Climate, 30, 68236850, https://doi.org/10.1175/JCLI-D-16-0609.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reale, O., W. K. Lau, K.-M. Kim, and E. Brin, 2009: Atlantic tropical cyclogenetic processes during SOP-3 NAMMA in the GEOS-5 global data assimilation and forecast system. J. Atmos. Sci., 66, 35633578, https://doi.org/10.1175/2009JAS3123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reale, O., K. M. Lau, and A. da Silva, 2011: Impact of an interactive aerosol on the African easterly jet in the NASA GEOS-5 global forecasting system. Wea. Forecasting, 26, 504519, https://doi.org/10.1175/WAF-D-10-05025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reale, O., K. M. Lau, A. da Silva, and T. Matsui, 2014: Impact of assimilated and interactive aerosol on tropical cyclogenesis. Geophys. Res. Lett., 41, 32823288, https://doi.org/10.1002/2014GL059918.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Remer, L. A., and Coauthors, 2005: The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci., 62, 947973, https://doi.org/10.1175/JAS3385.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2008: The GEOS-5 data assimilation system—Documentation of versions 5.0.1, 5.1.0, and 5.2.0. NASA/TM-2008-104606, Vol. 27, Tech. Rep. Series on Global Modeling and Data Assimilation, 92 pp.

  • Rosenfeld, D., Y. Rudich, and R. Lahav, 2001: Desert dust suppressing precipitation: A possible desertification feedback loop. Proc. Natl. Acad. Sci. USA, 98, 59755980, https://doi.org/10.1073/pnas.101122798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., 1999: Indirect forcing by anthropogenic aerosols: A global climate model calculation of the effective‐radius and cloud‐lifetime effects. J. Geophys. Res., 104, 93699380, https://doi.org/10.1029/1998JD900009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorncroft, C., and K. Hodges, 2001: African easterly wave variability and its relationship to Atlantic tropical cyclone activity. J. Climate, 14, 11661179, https://doi.org/10.1175/1520-0442(2001)014<1166:AEWVAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twohy, C. H., 2015: Measurements of Saharan dust in convective clouds over the tropical eastern Atlantic Ocean. J. Atmos. Sci., 72, 7581, https://doi.org/10.1175/JAS-D-14-0133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wong, S., A. E. Dessler, N. M. Mahowald, P. Yang, and Q. Feng, 2009: Maintenance of lower tropospheric temperature inversion in the Saharan air layer by dust and dry anomaly. J. Climate, 22, 51495162, https://doi.org/10.1175/2009JCLI2847.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, H., G. M. McFarquhar, S. M. Saleeby, and W. R. Cotton, 2007: Impacts of Saharan dust as CCN on the evolution of an idealized tropical cyclone. Geophys. Res. Lett., 34, L14812, https://doi.org/10.1029/2007GL029876.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1567 1124 27
PDF Downloads 370 104 14